
GRAIL: Efficient Time-Series Representation Learning

John Paparrizos
University of Chicago

jopa@cs.uchicago.edu

Michael J. Franklin
University of Chicago

mjfranklin@cs.uchicago.edu

ABSTRACT
The analysis of time series is becoming increasingly preva-
lent across scientific disciplines and industrial applications.
The effectiveness and the scalability of time-series mining
techniques critically depend on design choices for three com-
ponents responsible for (i) representing; (ii) comparing; and
(iii) indexing time series. Unfortunately, these components
have to date been investigated and developed independently,
often resulting in mutually incompatible methods. The lack
of a unified approach has hindered progress towards fast and
accurate analytics over massive time-series collections. To
address this major drawback, we present GRAIL, a generic
framework to learn compact time-series representations that
preserve the properties of a user-specified comparison func-
tion. Given the comparison function, GRAIL (i) extracts
landmark time series using clustering; (ii) optimizes neces-
sary parameters; and (iii) exploits approximations for ker-
nel methods to construct representations in linear time and
space by expressing each time series as a combination of
the landmark time series. We extensively evaluate GRAIL
for querying, classification, clustering, sampling, and visu-
alization of time series. For these tasks, methods leveraging
GRAIL’s representations are significantly faster and at least
as accurate as state-of-the-art methods operating over the
raw time series. GRAIL shows promise as a new primitive
for highly accurate, yet scalable, time-series analysis.

PVLDB Reference Format:
John Paparrizos and Michael J. Franklin. GRAIL: Efficient Time-
Series Representation Learning. PVLDB, 12 (11): 1762-1777, 2019.
DOI: https://doi.org/10.14778/3342263.3342648

1. INTRODUCTION
Time series are often the outcome of sequentially record-

ing time-varying measurements of natural processes (e.g.,
earthquakes and weather) or human-made artifacts (e.g.,
stock market and speech signals) [51, 38]. Recent technolog-
ical advances permit the collection of enormous amounts of
time-varying measurements [89, 77] across scientific appli-
cations (e.g., applications in astronomy [4] and neuroscience
[16] involve millions of time series) and industrial settings

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342648

0 0.2 0.4 0.6 0.8 1.0

1-NN ED over DFT representations

0

0.2

0.4

0.6

0.8

1.0

1
-N

N
 S

B
D

 o
v
e
r

ra
w

 r
e
p
re

s
e
n
ta

ti
o
n
s

(a) Raw vs. DFT

0 0.2 0.4 0.6 0.8 1.0

1-NN ED over GRAIL representations

0

0.2

0.4

0.6

0.8

1.0

1
-N

N
 S

B
D

 o
v
e

r
ra

w
 r

e
p

re
s
e

n
ta

ti
o

n
s

(b) Raw vs. GRAIL

Figure 1: Comparison of classification accuracies across 128
datasets using time series in their raw representations against
compact representations of size 20 computed with DFT and
GRAIL. Circles over the diagonal indicate datasets over which
raw representations outperform low-dimensional representations.

(e.g., large-scale internet services handle billions of time-
stamped measurements per day [74, 94, 6]). With the ex-
plosion of Internet of Things (IoT) applications, the rapid
growth of time-series volumes is expected to continue [77].
Consequently, time-series analysis algorithms will have to
operate over increasingly massive IoT collections.

However, most state-of-the-art time-series mining meth-
ods cannot scale to millions of time series [70, 38, 9]. The
temporal ordering and the high dimensionality of the ob-
servations, combined with the large time-series volumes, in-
troduce severe challenges not shared with the analysis of
other data types [127, 38]. Specifically, the temporal or-
dering may introduce distortions (see Section 2.3), which
complicate the comparison of time series. In addition, the
high dimensionality increases the computation and storage
requirements of methods operating directly over time se-
ries. Finally, the large time-series volumes can make effec-
tive but non-scalable methods impractical in large-scale set-
tings. To address these challenges, effective solutions require
decisions for three core components [38]: (i) the represen-
tation method to construct low-dimensional representations
that preserve time-series characteristics; (ii) the comparison
method, which should offer invariances to distortions in time
series; and (iii) the indexing method, which organizes time
series to facilitate fast retrieval from massive collections.

Unfortunately, these components have to date been inves-
tigated and developed independently [38], often resulting in
mutually incompatible methods. Therefore, existing time-
series mining methods suffer from a number of drawbacks:
(i) these methods become prohibitively expensive as they
operate directly over raw time series to avoid incompatible
representations (e.g., this is the case for most classification
methods [9]); (ii) these methods sacrifice accuracy for ef-
ficiency as they directly exploit representations (e.g., this

is the case for online clustering methods that only support
less-effective `p-norms [36]); or (iii) these methods follow a
complicated, two-step approach to exploit representations
to prune part of the pairwise comparisons (e.g., this is the
case for querying methods that exploit representations in-
compatible with a similarity function [130, 62, 104, 61, 99]).

The two-step approach is the most prominent paradigm
to accelerate time-series mining methods. The requirement
to perform two steps is due to the dependence on the sem-
inal GEMINI framework [2, 39], which laid the foundations
for fast time-series retrieval under Euclidean distance (ED).
Specifically, GEMINI (i) constructs low-dimensional repre-
sentations; and (ii) defines a measure over such representa-
tions to lower bound (i.e., prune part of) the ED comparisons
in the high-dimensional space. For different distances, two-
step approaches [130, 62, 104, 61] additionally show that ED
lower bounds the new distance. This is a challenging task
for which solutions for specific comparison methods resulted
in award-winning research [39, 58, 19, 25, 99]. However, the
plethora of representation and comparison methods [38, 119,
9, 24], along with the difficulty in developing lower bounding
measures, impact the sustainability of such methodology.

The lack of a unified approach has hindered progress to-
wards fast and accurate analytics for time series. Therefore,
we need a new primitive to learn time-series representations
that builds on and extends the principles of GEMINI. Specif-
ically, given a comparison function, the learned represen-
tations should: (P1) preserve the pairwise similarities and
serve as feature vectors for machine learning methods; (P2)
lower bound the comparison function to accelerate similarity
search; (P3) allow using prefixes of the representations (by
ranking their coordinates in descending order of importance)
for scaling methods under limited resources; (P4) support
efficient and memory-tractable computation for new data to
enable operations in online settings; and (P5) support effi-
cient and memory-tractable eigendecomposition of the data-
to-data similarity matrix to exploit highly effective methods
that rely on such cornerstone operation.

In this paper, we develop a primitive to satisfy all afore-
mentioned principles. Specifically, we present a Generic
RepresentAtIon Learning (GRAIL) framework to automat-
ically learn compact representations that preserve the prop-
erties of a user-specified similarity function. This is fun-
damentally different from the time-series literature where
representation methods are agnostic to the similarity func-
tion used in subsequent steps [38]. To illustrate the im-
plications of that point, in Figure 1 we compare the one-
nearest-neighbor (1-NN) classification accuracies across 128
datasets [32] using the Shape-Based Distance (SBD) [91, 92]
over raw time series against ED over two representations of
size 20 computed by (i) Discrete Fourier Transform (DFT),
a state-of-the-art representation method [119, 105]; and (ii)
our GRAIL representations, which preserve a distance sim-
ilar to SBD that we discuss later. SBD over raw time series
significantly outperforms ED over DFT representations. In
contrast, ED over GRAIL representations is at least as ac-
curate as SBD over raw time series and significantly faster.

To learn highly accurate representations, GRAIL exploits
kernel methods that unify data modeling and algorithm de-
sign [26, 53, 108, 109, 7]. GRAIL requires to perform two
steps to learn representations in linear time and space: (i)
approximate the sequence-to-sequence (SS) similarity ma-
trix; and (ii) approximate the eigendecomposition of SS.
To approximate SS and facilitate easy adaptation of ker-
nel functions (i.e., similarity measures), GRAIL relies on the
Nyström method [86, 123], which is agnostic to the choice of

the kernel function. Specifically, GRAIL first extracts a dic-
tionary of time-series sequences and constructs the sequence-
to-dictionary (SD) and the dictionary-to-dictionary (DD)
similarity matrices. Then, Nyström uses these matrices to
construct representations by expressing each time series as
a linear combination of the time series in the dictionary.

Unfortunately, the quality of Nyström’s representations
critically depend on an accurate estimation of necessary pa-
rameters. In addition, the dimensionality of Nyström’s rep-
resentations might surpass the dimensionality of the origi-
nal time series, which is undesirable. To circumvent these
limitations, we propose a lightweight methodology for unsu-
pervised parameter estimation. In addition, we propose to
leverage Nyström’s representations to perform an additional
approximation of the eigendecomposition of SS in order to
learn the final representations of reduced dimensionality.

Considering the importance of using shift-invariant com-
parison methods for time-series analysis (see Section 2.3),
we describe GRAIL by showing how it can support this
property. To alleviate the burdens associated with the high
memory and runtime costs of computing large similarity
matrices (e.g., SD), we first show how we can compute a
Shift-INvariant Kernel (SINK) by decomposing the original
time series into their frequency components and by operat-
ing over the first few frequencies that well approximate the
original time series. To compute landmark time series that
summarize available data, we study the effectiveness of us-
ing time-series clustering methods, such as k-Shape [91], for
dictionary learning. Finally, we build the end-to-end solu-
tion on top of Apache Spark [131] to facilitate representation
learning and time-series analytics over massive collections.

To demonstrate the effectiveness of SINK and GRAIL, we
perform an extensive evaluation on 128 datasets and com-
pare their performance against state-of-the-art methods for
five tasks, namely, (i) querying; (ii) classification; (iii) clus-
tering; (iv) sampling; and (v) visualization. We use public
datasets and make our source code available. In summary,
we show that kernel classifiers using SINK are as powerful in
terms of accuracy as an ensemble of eleven 1-NN classifiers
with state-of-the-art distance measures. GRAIL represen-
tations are more accurate than current representations and
achieve better pruning power than existing lower bounding
measures. Importantly, for all five tasks, methods leverag-
ing GRAIL’s representations are significantly faster and at
least as accurate as state-of-the-art methods operating over
the high-dimensional time series. Finally, we present a case
study on millions of time series representing energy usage
patterns to emphasize the scalability of our ideas.

We start with a review of the relevant background (see
Section 2). We provide an overview of our approach (Section
3.1) and then present our contributions as follows:
• We show how SINK, a shift-invariant kernel function,

can operate in a principled manner over the first few low
frequencies of time series (Section 3.2).
• We study the effectiviness of time-series clustering for

learning dictionaries for Nyström (Section 3.3).
• We develop a solution to estimate necessary parameters

and the compactness of representations (Section 3.4).
• We present GRAIL, our end-to-end solution for learning

compact time-series representations (Section 3.5).
• We build GRAIL on top of Apache Spark to facilitate

large-scale time-series analytics (Section 4).
• We evaluate our ideas by conducting an extensive exper-

imental evaluation for five tasks (Sections 5 and 6).
Finally, we conclude with a discussion of related work (Sec-
tion 7) and the implications of our work (Section 8).

2. BACKGROUND AND PRELIMINARIES
In this section, we review linear and nonlinear dimension-

ality reduction methods (Section 2.1). Then, we summarize
time-series representation methods (Section 2.2) and com-
mon time-series distortions and distance measures (Section
2.3). Finally, we present our problem of focus (Section 2.4).

2.1 Dimensionality Reduction Methods
Dimensionality reduction is the process of mapping high-

dimensional vectors into a low-dimensional space while pre-
serving some property of interest [29, 49]. Depending on the
mapping, we divide dimensionality reduction methods into
linear and nonlinear methods [67]. To cover concepts nec-
essary for understanding the proposed ideas, we first review
linear methods and, subsequently, nonlinear methods.
Linear dimensionality reduction: Consider n real-valued
m-dimensional vectors X = [~x1, . . . , ~xn]> ∈ Rn×m and a
target dimensionality k < m. The goal is to produce low-
dimensional vectors Zk = [~z1, . . . , ~zn]> ∈ Rn×k such that
pairwise similarities, expressed as inner products, in the low-
dimensional space closely approximate pairwise similarities
in the high-dimensional space. This is the problem that the
cornerstone method Singular Value Decomposition (SVD)
[93, 54, 116, 27] solves optimally [49, 29]. To see how SVD
produces Zk, we first express the SVD of X as follows:

X = UΣV > (1)

where the matrix U = [~u1, . . . , ~un] ∈ Rn×n contains the
left singular vectors, the matrix V = [~v1, . . . , ~vm] ∈ Rm×m
contains the right singular vectors, and the matrix Σ =
diag(σ1, . . . , σm) ∈ Rn×m contains the singular values in
descending order along its diagonal (i.e., σ1 ≥ . . . ≥ σm),
with zeroes everywhere else. By retaining the first k < m
singular values and vectors, we obtain Zk as follows:

Zk = U1:n,1:kΣ1:k,1:k = XV1:m,1:k (2)

SVD requires O(min{nm2+m3,mn2+n3}) time but, unfor-
tunately, SVD fails to effectively model data with nonlinear
structures. In contrast, kernel methods [26, 53, 107, 108,
109] play a central role in the analysis of real-world data by
enabling operations in a high-dimensional feature space.
Nonlinear dimensionality reduction: Specifically, ker-
nel methods use a function φ : Rm → H to implicitly map
data into a Reproducing Kernel Hilbert Space (RKHS) H of
high (and often infinite) dimension. Because explicit com-
putation of coordinates in H is infeasible, kernel methods
invoke the “kernel trick” [3], which permits interaction with
data using a kernel function, k(~x, ~y) = 〈φ(~x), φ(~y)〉H, or its
corresponding distance metric, Dk(~x, ~y) = k(~x, ~x)+k(~y, ~y)−
2k(~x, ~y) [106]. To perform dimensionality reduction in H,
Kernel Principal Component Analysis (KPCA) [107, 108]
performs eigendecomposition over the Gram matrix K, with
Kij = k(~xi, ~xj) = φ(~xi)

>φ(~xj) ∀ i, j ∈ {1, . . . , n}. KPCA
requires O(n2) space to store K, O(n2) time to construct
K, and O(n3) time to perform an eigendecomposition on K.
Approximations for kernel methods: To alleviate the
burdens associated with the high memory and runtime costs
of kernel methods, two seminal methods have been proposed
to approximate K: the Nyström method [86, 123, 37] and
the Random Fourier Features (RFF) method [98]. Specifi-
cally, Nyström is a data-aware method that computes land-
mark vectors from available data and requires O(nd2) time
to construct Zd, where d is the number of landmark vec-
tors. In contrast, RFF is a data-agnostic method that sam-
ples feature maps from an independent distribution and re-
quires O(nmd) time to construct Zd, where d is the number

of feature maps. For both methods, the benefits from ap-

proximating K̂ = ZdZ
>
d are twofold: (i) significant memory

savings as Zd requires only O(nd) space; and (ii) substan-
tial runtime savings. However, considering the difficulty to
generalize RFF on arbitrary kernel functions as well as the
impressive theoretical and empirical benefits for Nyström
in comparison to RFF [128], in our approach we rely on
Nyström to efficiently learn representations for time series.

2.2 Time-Series Representation Methods
Despite their optimality [49, 29], exact linear and nonlin-

ear dimensionality reduction methods are prohibitively ex-
pensive in practice. Therefore, representation methods rely
on spectral decompositions [49, 29, 95, 56, 88] to reduce
the high dimensionality of time series and lower the stor-
age and computational costs of time-series analysis meth-
ods. Since the debut of the GEMINI framework [2, 39],
research on representation methods has focused on explor-
ing trade-offs between low-dimensional representations, such
as reconstruction quality, sensitivity to noise, compactness,
and computational cost. Depending on the transformation
applied to time series and on the output format, we divide
representation methods into data-agnostic and data-aware
methods and into numeric and symbolic methods [38].
Data-agnostic methods: The GEMINI framework rep-
resented time series as a set of sinusoidal coefficients using
the DFT [2, 39]. Subsequently, many methods were pro-
posed to replace DFT, including the Discrete Cosine Trans-
form (DCT) [63], the Discrete Wavelet Transform (DWT)
[22], Daubechies and Haar wavelets [96, 21], Coiflets [111],
and Chebychev polynomials [19]. More specific to time se-
ries, the Piecewise Aggregate Approximation (PAA) [129,
57] represents time series as mean values of segments.
Data-aware methods: In contrast to data-agnostic meth-
ods, data-aware methods tune transformation parameters on
available data to improve their effectiveness. For example,
data-aware methods relying on spectral decompositions se-
lect a subset of DFT [117] or DWT [115] coefficients. A data-
aware version of PAA uses vector quantization to construct
a codebook of segments [78, 79], whereas other approaches,
namely Piecewise Linear Approximation (PLA) [112] and
Adaptive Piecewise Constant Approximation (APCA) [58],
fit a polynomial model or use a constant approximation for
each segment, respectively. SVD is also inherently a data-
aware method proposed to represent time series [63, 101].
Symbolic methods: The output of all previous meth-
ods is numeric. Symbolic methods additionally quantize the
numeric output. For example, the Symbolic Aggregate ap-
proXimation (SAX) [72] and the Symbolic Fourier Approxi-
mation (SFA) [105] rely on alphabets to transform PAA and
DFT representations, respectively, into short words.

The previously described methods construct representa-
tions to lower bound or approximate ED [135, 20]. Unfortu-
nately, recent experimental evaluations of distance measures
[91, 92, 35, 119, 9] show that ED is less effective for most
applications. Next, we review alternative distance measures.

2.3 Invariances and Distance Measures
Distance measures handle the majority of distortions (e.g.,

noise and outliers) by preprocessing time series before com-
parison [59, 60, 5, 88, 48]. However, for many important
distortions, preprocessing is not effective and, therefore, so-
phisticated distance measures offer invariances during com-
parison. For example, to satisfy the shift invariance, SBD
[91, 92] compares out-of-phase time series, whereas DTW
[103] compares time series with misaligned regions.

Shape-based Distance: SBD, a parameter-free distance
measure, compares time series in O(m logm) runtime cost.
Let F(~x) and F−1(~x) denote the DFT and the inverse DFT
of ~x [56, 88], respectively, we compute SBD as follows:

SBD(~x, ~y) = 1−max(
F−1{F(~x) ∗ F(~y)}

||~x|| · ||~y||) (3)

where ∗ is the complex conjugate in the frequency domain.
Dynamic Time Warping: DTW first constructs a ma-
trixM ∈ Rm×m containing in each cell the ED of any two co-
ordinates of ~x and ~y. Then, DTW computes in O(m2) time
a warping path in M , a contiguous set of matrix elements
L = {l1, l2, . . . , lr}, with r ≥ m, with the minimum warping
cost among the exponential number of possible paths:

DTW (~x, ~y) = min

√∑r

i=1
li (4)

Due to the high computation cost of DTW, constrained Dy-
namic Time Warping (cDTW) visits only a subset of the
cells on M by defining the band, the shape of the subset
matrix M , and the warping window, the width of the band.

2.4 Problem Definition
We address the problem of efficiently learning compact

representations that preserve the invariances offered by a
given kernel function, k(~x, ~y), for any ~x and ~y in the orig-
inal high-dimensional space. We require the learned repre-
sentations to satisfy the following principles: (P1) preserve
similarities (i.e., 〈Zk(~x), Zk(~y)〉 ≈ k(~x, ~y)); (P2) offer lower
bounding measure (i.e., ED(Zk(~x), Zk(~y)) ≤ Dk(~x, ~y)); (P3)
permit operations over prefixes of coordinates (i.e., Zq =
[Zk(1), . . . , Zk(q)], with q < k); (P4) support efficient and
memory-tractable computation of new data; and (P5) sup-
port efficient and memory-tractable eigendecomposition of K.

3. THE GRAIL FRAMEWORK
Our objective is to simplify and unify the design of time-

series mining methods by enabling them to operate directly
over representations. To achieve this goal, we present GRAIL,
a framework to facilitate efficient representations learning
based on a user-specified comparison method. We start by
providing an overview of GRAIL and its core components.

3.1 Overview
A promising direction to construct representations that

natively preserve the invariances offered by a chosen com-
parison method arises with the use of kernel methods [26,
53, 108, 109, 7]. Unfortunately, exact methods for represen-
tation learning with kernels, such as KPCA [107], are pro-
hibitively expensive in practice as they require to operate
over the full Gram matrix, which consists of pairwise simi-
larities computed with a chosen kernel function. A number
of approaches have been proposed to approximate the ker-
nel matrix and reduce the high memory and runtime cost
(see Section 2.1). For GRAIL, we rely on Nyström, which is
agnostic to the choice of kernel function. Nyström approxi-
mates k(~xi, ·) = φ(~xi) ∀ i ∈ {1, . . . , n} as a linear combina-
tion of d vectors G = [~g1, . . . , ~gd]

> ∈ Rd×m [87]:

arg min
a∈Rd×n

∑n

i=1
||K(~xi, ·)−

∑d

j=1
aj,iK(~gj , ·)||2H (5)

For each ~xi, this is a convex problem depending on a single
column of a and the optimal solution is a = W

−1
ET , where

W ∈Rd×d is the DD matrix, with Wij = k(~gi, ~gj) ∀ i, j ∈G,
E∈Rn×d is the SD matrix, with Eij = k(~xi, ~gj) ∀ i∈X, j∈

GRAIL Framework

1. Dictionary Learning 2. Parameter Estimation

3. SS Matrix Approximation 4. Representation Learning

G (dxm)
Clustering

W
(dxd)

Compute
W

Select γ

E
(nxd)

Zd
(nxd)

QwΛw
-0.5

(dxd)

G

G

W,γ

Compute
E, W-1

Zd
Compute
C, EIG(C)

Zd
(nxd)

Zk
(nxk)

QC
(dxk) Zk

Χ

Χ

Figure 2: Overview of GRAIL.

G, and W
−1

= QWΛ
−1

W Q
−1

W is the inverse of W . Nyström

constructs K̂ ≈ K as follows:

K̂=EW
−1
E>= (EQWΛ

−0.5

W)(EQWΛ
−0.5

W)>= ZdZ
>
d (6)

Unfortunately, Nyström suffers from two main drawbacks.
First, the quality of the learned representations, Zd, criti-
cally depend on an accurate estimation of necessary param-
eters, a step that is often omitted in the literature or the
assumption is taken that parameters are tuned in a super-
vised manner. Second, the dimensionality of the learned
representation might surpass the dimensionality of the orig-
inal time series (i.e., d � m), which defeats the original
purpose of producing compact representations.

To circumvent these limitations, we present an end-to-end
solution for learning time-series representations, which in-
troduces two novelties. Specifically, we propose (i) a method-
ology to estimate parameters with the objective to maximize
both the variance of the data in the low-dimensional space
and the compactness of the learned representations; and (ii)
an additional approximation of the eigendocomposition of
K using Zd to learn the final representation, which permit
us to satisfy principles P1 through P5 in Section 2.4. Fig-
ure 2 provides an overview of GRAIL’s components that we
discuss in detail next. We start by showing how we can
approximate in a principled manner SINK, a shift-invariant
kernel function, using only the first few Fourier coefficients
of the original time series (Section 3.2). Given a kernel func-
tion, GRAIL proceeds in three steps. First, GRAIL extracts
landmark time series using clustering (Section 3.3). Sec-
ond, GRAIL estimates necessary parameters (Section 3.4).
Third, given the landmark time series and the estimated
parameters, GRAIL performs two approximations for ker-
nel methods to learn representations (Section 3.5).

3.2 Shift-Invariant Kernel for Time Series
Comparing time-series under the shift invariance is of crit-

ical importance for effective time-series analysis. GRAIL in-
teracts with time series using kernel functions that satisfy
the positive semi-definiteness property [28, 109], which we
discuss next. Unfortunately, successful methods for time-
series comparison under these invariances, such as SBD and
DTW (see Section 2.3), cannot construct, based on their cur-
rent formulation, proper kernel functions [118, 30]. State-of-
the-art kernel functions for time series, such as the Global
Alignment (GA) kernel [31, 30], scale quadratically with the
time-series length and are therefore prohibitively expensive
to use in practice. Our novel SINK function is intended to
circumvent this efficiency limitation.

The positive semi-definiteness (p.s.d.) property of kernel
functions (often referred to as Mercer’s condition [81]) con-
stitutes a critical condition for the existence of RKHS (see

TS1

TS2

(a) Time series T1 and T2

NCC(T1,T2,100)

NCC(T1,T2,90)

(b) NCC sequences

Figure 3: Examples of NCC sequences produced by SINK.

Section 2.1) and leads to convex solutions for many learning
problems involving kernels [26, 7]. In simple terms, a sym-
metric function k(·, ·) is a p.s.d. kernel if its Gram matrix
K has non-negative eigenvalues. Unfortunately, for many
functions it is challenging to show that they satisfy Mer-
cer’s condition. For example, it required multiple attempts
to define a proper DTW-like kernel function, such as GA
[113, 11, 50, 31, 30]. Haussler’s convolution kernel [52] is a
seminal framework for engineering new p.s.d. kernels [114].

The central idea behind convolution kernels is to infer
the similarity of two data objects based on the similarity of
their parts. Specifically, convolution kernels combine p.s.d.
kernels (i.e., return the sum of the values of the kernels)
computed on all pairs of the components of the composite
data objects. More formally, we assume that a time series
~x ∈ X is composed of P parts xp ∈ Xp. Let us also assume
that a p.s.d. kernel k′ : Xp × Xp → R exists and that a
relation R(~x) denotes the possible ways in which we can
transform ~x into x1, . . . , xP . Then, we can define a kernel
k : X × X → R as follows [52, 53, 114]:

k(~x, ~y) =
∑

x′∈R(~x)

∑
y′∈R(~y)

k′(x′, y′) (7)

Therefore, we need to define a relation Rs(~x) to decompose
time series in such a way to be shift-invariant. We adapt the
kernel from [118] and we introduce critical normalizations.
Shift-invariant kernel: Rs(~x) needs to decompose time
series ~x into all the shifted versions of ~x. By using a circu-
lar shift operator over ~x as our relation, we can rearrange
the coordinates of ~x = (x1, . . . , xm) as follows: Rs(~x, S) =
(x(1+S) mod m, . . . , x(m+S) mod m). This process closely re-
lates to how SBD (see Section 2.3) finds the shift that maxi-
mizes the inner product between ~y and Rs(~x, S), ∀S ∈ [1,m].
Instead of finding the best shift, [118] proposed to weight
higher (lower) the inner products in shifted positions with

large (small) values by setting k′(~x, ~y, γ) = eγ〈~x,~y〉, with
bandwidth γ > 0, in Equation 7. To eliminate numerical
issues that arise due to the exponentiation of long time se-
ries, we use the same normalization as for SBD:

ks(~x, ~y, γ) =
∑

eγNCC(~x,~y) (8)

where NCC(~x, ~y) = F−1{F(~x)∗F(~y)}
||~x||·||~y|| is the normalized cross-

correlation sequence. This formulation might result in a
Gram matrix with off-diagonal values higher than values
on the diagonal (i.e., a time series may be more similar to
another time series than to itself!), which contradicts how
methods often operate over similarity matrices. Therefore,
to solve this issue, we define SINK as follows:

k′s(~x, ~y, γ) =
ks(~x, ~y, γ)√

ks(~x, ~x, γ) · ks(~y, ~y, γ)
(9)

For every pairwise comparison, SINK transfers the time se-
ries in their Fourier domain using the Fast Fourier Trans-
form (FFT), where the cross-correlation operation can be
efficiently computed, and return back to the original space
using the inverse FFT. For GRAIL, we need to employ SINK

Algorithm 1: Shift-Invariant Kernel (SINK)

Input : ~x is a 1-by-m z-normalized time series
~y is a 1-by-m z-normalized time series
γ is a scaling parameter
e denotes the preserved energy in Fourier domain

Output: Sim is the kernel value between ~x and ~y
1 function Sim = SINK(~x,~y,γ,e):

2 Sim =
SumNCC(~x,~y,γ,e)

sqrt(SumNCC(~x,~x,γ,e)·SumNCC(~y,~y,γ,e))

3 def cc = SumNCC(~x,~y,γ,e):
4 cc = sum(exp(γ ·NCC(~x, ~y, e)))

5 def cc = NCC(~x, ~y,e):
6 FFTx = PreservedEnergy(~x, e)
7 FFTy = PreservedEnergy(~y, e)
8 cc = IFFT (FFTx ∗ FFTy)
9 cc = cc

norm(~x)·norm(~y)

10 def FFTx = PreservedEnergy(~x,e):

11 FFTx = FFT (~x, 2nextpower2(2·len(~x)−1))

12 NormCumSum =
cumsum(abs(FFTx).2)

sum(abs(FFTx).2)

13 k = find(NormCumSum ≥ e
2)

14 FFTx((k + 1) : (endindex− k − 1)) = 0

for the computation of the SD and DD matrices. In both
matrices, the set of time series in the dictionary remains
static and, therefore, we explore two additional optimiza-
tions that lead to significant speedup. Specifically, we trans-
fer the time-series in the dictionary in their Fourier domain
only once and reuse them in every pairwise computation to
avoid unnecessary FFT calls. In addition, considering that
most natural time series exhibit a skewed energy spectrum
[39], which implies that most of the energy consentrates in
the first few low frequencies, it suffices to retain only the
first few Fourier coefficients of the time-series that retain
some user-specified level of energy (e.g., 90%). Algorithm
1 shows how SINK compares two time series in a few lines
of code using modern mathematical software. Specifically,
from line 10 to 14, SINK computes number of Fourier coef-
ficients required to preserve the user-specified energy level
e. SINK requires O(m logm) time due to its dependence on
FFT. For fixed-size inputs, which is the focus of this work,
SINK satisfies the p.s.d. property as it combines p.s.d. ker-
nels computed for each possible alignment between two time
series. However, for time series of variable lengths it requires
deeper analysis, which we leave for future work. In Figure
3, we present an example of how SINK constructs NCC se-
quences with and without energy preservation (Figure 3b)
for two time series (Figure 3a). We observe that with 90% of
preserved energy, which reduces the size of time series from
1024 to only 21, SINK accurately approximates exact NCC.

3.3 Time-Series Dictionary Learning
Given SINK, GRAIL requires to compute a dictionary

of landmark time series to summarize the underlying data.
Such selection of time series for Nyström is a difficult com-
binatorial problem. A large body of work focuses on em-
pirical and theoretical analysis of sampling and projection
methods for Nyström [123, 37, 65, 47]. Unfortunately, exist-
ing approaches have not been developed with time series in
mind. Therefore, we study the value of using the centroids of
time-series clustering methods to construct landmark time
series. The approximation error for Nyström is bounded by
the quantization error of mapping each vector ~xi ∈ X to the
closest of the d landmark vectors ~gi ∈ G [133]:

||K − EW−1
ET ||F ≤

∑n

i=1
||~xi − gmap(i)||2 (10)

wheremap(i) = arg min j=1,...,d ||~xi−~gj ||2. Clustering meth-
ods relying on the principles of k-means [76] minimize the

Representation size
0 50 100 150 200

V
a

ri
a

n
c
e

 e
x
p
la

in
e

d
 (

%
)

0.80

0.85

0.90

0.95

1.00

γ = 1
γ = 5
γ = 10
γ = 15
γ = 20

(a) Cumulative variance

Bandwidth (γ)
1 5 10 15 20

1
-N

N
 A

c
c
u

ra
c
y

0.6

0.7

0.8

0.9

1.0

0.732

0.854

0.883

0.911
0.893

(b) Classification accuracy

Figure 4: Comparison of the compactness and the classification
accuracy of learned representations with different γ values for
SINK for the StarLightCurve dataset.

exact same quantization error. Unfortunately, k-means is
not suitable for time-series clustering. Instead, k-Shape ef-
ficiently clusters time series and the cluster centroids effec-
tively summarize time series for distance measures offering
shift invariance [91, 92]. Therefore, for GRAIL, we use the
cluster centroids of k-Shape as dictionary of landmark time
series. k-Shape requires O(max{n · d ·m · log(m), n ·m2, d ·
m3}) time, where d is the number of centroids requested.
Our evaluation (see Sections 5 and 6) shows that k-Shape
significantly outperforms all state-of-the-art methods for se-
lecting landmark time series, including random sampling.

Next, we discuss how we can rely on the landmark time
series to estimate necessary parameters for GRAIL.

3.4 Parameter Estimation
After the construction of landmark time series, GRAIL

proceeds with the estimation of kernel function parameters,
which affect (i) the compactness; and (ii) the quality of the
learned representations. To illustrate this point, Figure 4 ex-
plores how different γ values of SINK affect those two factors
for the StarLightCurve dataset [32]. Specifically, Figure 4a
measures the cumulative variance explained in varying rep-
resentation sizes for different γ values. Figure 4b presents
the 1-NN classification accuracies of representations captur-
ing 90% of the variance in time series for different γ values.
We observe that small γ values require only a few eigen-
vectors to explain 90% of the variation in the similarities of
time series, whereas large γ values require significantly more
eigenvectors (i.e., small γ values lead to more compact rep-
resentations). On the other hand, when all representations
explain the same targeted amount of variance in data, dif-
ferent γ values lead to significant differences in the quality
of the representations for various tasks, such as for classi-
fication in Figure 4b. Therefore, selecting small γ values
due to the storage and computation benefits might lead to
significant reductions in accuracy. Due to this difficulty in
tuning kernel function parameters, the literature often relies
on supervised tuning, which is not always realistic.

For GRAIL, we propose a simple, yet effective, method
to estimate the bandwidth γ of SINK that relies on two key
observations. First, considering that some loss of informa-
tion is unavoidable in the low-dimensional space, time-series
similarities with large variance are much more likely to be
preserved in the low-dimensional space than time-series sim-
ilarities with low variance. Therefore, we want to select γ
values such that the variance is maximized. Second, to de-
termine how effectively we can capture the variance in the
low-dimensional space, we need to consider how much of
the variance each eigenvalue explains. Therefore, we want
to select γ values such that for a small number of r eigen-

Algorithm 2: Parameter Estimation

Input : G is a d-by-m matrix containing d landmark sequences
GV is a 1-by-l vector containing l values for γ
e denotes the preserved energy in Fourier domain

Output: score is the score of selected γ
gamma is the selected kernel scaling parameter γ

1 function [score, gamma] = GammaSel(G,GV, e):
2 foreach γ ∈ GV do
3 for i = 1 to d do
4 for j = 1 to d do
5 W (i, j) = SINK(G(i, :), G(j, :), γ, e)

6 GV ar(γ) = var(W)
7 [Q,L] = eig(W)

8 V arTop20(γ) =
cumsum(L(1:20))

sum(L)

9 [score, gamma] = max(GV ar ◦ V arTop20)

values, such as r = 20, the variance explained is maximized.
Our method combines those two observations in a scoring
function to permit effective selection for γ. Specifically, con-
sidering the eigendecomposition of matrix W = QWΛWQ

T
W ,

where W (i.e., the DD matrix) consists of the pairwise ker-
nel values of the landmark time series (see Section 3.3), we
compute the scoring function of each γ value as follows:

Score(γ) = var(W,γ) ·
∑r
i=1 ΛW (i)∑d
j=1 ΛW (j)

(11)

where var(W,γ) denotes the variance of the kernel values in
W computed with SINK using γ. Algorithm 2 shows how
we can tune γ for SINK according to our scoring function
(Equation 11). The cost of Algorithm 2 is dominated by
the need to compute the eigendecomposition of W, which
requires O(d3) time. In our evaluation (Sections 5 and 6),
we show that our method for parameter tuning leads to rep-
resentations with similar compactness and accuracy to rep-
resentations tuned in a supervised manner. Next, we show
how GRAIL learns time-series representations.

3.5 Time-Series Representation Learning
GRAIL proceeds in two steps: (i) constructs a temporal

representation, Zd, where d is the number of landmark time

series, to approximate the Gram matrix K̂ = ZdZ
>
d using

the Nyström method (Section 3.1); and (ii) uses Zd to ap-

proximate the eigendecomposition of K̂ and learn the final
representation Zk, where k ≤ d, which satisfies principles
P1 through P5 in Section 2.4.
Approximation of K: Nyström requires as input two ma-
trices: (i) matrix W ∈Rd×d, which contains all pairwise sim-
ilarities between the d landmark time series; and (ii) matrix
E ∈Rn×d, which contains pairwise similarities between the
n time series and the d landmark time series. Once we con-
struct those two matrices, Nyström computes the inverse of
W , W−1 = QWΛ−1

W Q−1
W and constructs Zd as follows:

Zd = EQWΛ−0.5
W (12)

The dimensionality d of Zd corresponds to the number of
landmark time series extracted from the entire dataset and,
therefore, d is significantly smaller than the size n of the en-
tire dataset. Unfortunately, for very large datasets, Nyström
might require thousands of landmark time series to accu-
rately approximate K. In such cases, the dimensionality of
the learned representation might surpass the dimensionality
of the original time series, which defeats the original purpose
of producing low-dimensional representations.
Representation Learning: To eliminate this issue, we ap-

proximate the eigendecomposition of K̂ using Zd and, subse-
quently, reduce the dimensionality from d to k by retaining

Algorithm 3: Representation Learning with GRAIL

Input : X is a n-by-m matrix containing n time series
d is the number of landmark time series to extract
f is a scalar to tune the dimensionality k of Zk
GV is a 1-by-l vector containing l values for γ
e denotes the preserved energy in Fourier domain

Output: Zk is a n-by-k matrix of the representations
1 function Zk = GRAIL(X, k,GV,m, f):
2 G = k − Shape(X, d)
3 [score, gamma] = GammaSel(G,GV, e)
4 for i = 1 to d do
5 for j = 1 to d do
6 W (i, j) = SINK(G(i, :), G(j, :), gamma, e)

7 for i = 1 to n do
8 for j = 1 to d do
9 E(i, j) = SINK(X(i, :), G(j, :), gamma, e)

10 [Q,L] = eig(W)

11 Zd = E ·Q · L−0.5

12 b = 0.5 · d
13 B = zeros(b, d)
14 for i = 1 to n do
15 B = [B;Zd(i, :)]
16 if B has no zero valued rows then
17 [U, S, V] = SV D(B)

18 B = sqrt(max(0, S2 − S2
b
2
, b
2

· Ib)) · V T

19 [Q,L] = eig(BT · B)

20 k = find(
cumsum(L)
sum(L)

> f)

21 Zk = Zd ·Q(1 : d, 1 : k)

only the top eigenvalues and eigenvectors of K. An alterna-
tive approach is to directly exploit the eigendecomposition
of matrix W , which Nyström computes to construct Zd, to
approximate the eigendecomposition. Unfortunately, this
approach offers a poor approximation of the eigendecompo-

sition of K̂. Importantly, it may lead to non-orthogonalized

eigenvectors of K̂ [42], as required by definition (see Sec-
tion 2.1), which impacts the effectiveness of the learned rep-
resentation. Therefore, assuming the eigendecomposition

of K = QΛQ>, we can approximate Q̂ = ZdQCΛ−0.5
C in

O(nd2), where QC ∈Rd×d and ΛC ∈Rd×d are the eigenvec-
tors and eigenvalues of C = Z>d Zd ∈ Rd×d. Unfortunately,
for a large number d of landmark time series, this computa-
tion becomes prohibitively expensive. We employ a matrix
sketching algorithm over Zd, namely, the Frequent Direc-
tions (FD) method [71], to efficiently approximate matrix C
by retaining only a sketch of size b of Zd in O(ndb), where
b ≤ d ≤ n, and we construct Zk = ZdQC1:d,1:k. This pro-

cedure leads to a number of benefits: (i) guarantees that Q̂
remains orthonormal and permits lower bounding of the ker-
nel function (P2); (ii) permits the estimation of the variance
explained in each coordinate of Zk and, therefore, we can
use prefixes of the coordinates of Zk (P3); and (iii) enables
efficient approximation of the eigenvalues and eigenvectors

of K̂ and, therefore, seamless integration with existing al-
gorithms relying on such key operation (P5). Overall, the
costs of Nyström and k-Shape dominate the runtime behav-
ior of GRAIL, O(max{n ·d ·m · log(m), n ·m2, d ·m3, n ·d2}),
which, importantly, is linear to the size n of the dataset. The
approximation guarantees known for the Nyström method
(or its variants) depend on the spectrum of the kernel ma-
trix, which are entirely data-dependent. We refer the reader
to [82] for recent results. As for SINK, providing guaran-
tees for settings with variable-length inputs requires deeper
analysis, which we leave for future work. Next, we review
the implementation of GRAIL on top of Apache Spark.

Apache Spark
PySpark

MLlib
GRAIL Framework

Figure 5: GRAIL is a thin layer on top of Apache Spark.

4. GRAIL OVER APACHE SPARK
We build GRAIL as a thin layer on top of Apache Spark

[131], a widely used distributed dataflow system, to faciliate
processing of large-scale IoT datasets. We utilize Spark’s
MLlib library [80] to access existing distributed implemen-
tations of popular data mining and machine learning meth-
ods. Figure 5 depicts the GRAIL layer. GRAIL first uses
k-shape to compute a dictionary of landmark time series.
We initialize k-Shape by assigning all time series in X to
random clusters, from which we extract centroids. Each it-
eration of k-shape includes two operations: (i) updating the
cluster membership of each time series in X with SBD; and
(ii) refining cluster centroids according to updated member-
ship. To parallelize the first step, we distribute X evenly
across all Spark executors. Each executor then uses SBD on
its small chunk of time series against the centroids and find
the closest centroid for each timeseries ~xi. To parallelize the
second step, we need to keep the aligned sequence ~xi

′ of ~xi
towards its closest centroid, which is already computed in
(i). We then obtain a distributed dataset (stored in Spark’s
RDD) of aligned sequences and utilize distributed matrix
multiplication to compute the covariance matrix required
during centroid computation. Finally, we perform eigende-
composition using FD to compute the refined centroid of
each cluster (each executor performs FD on its chunk).

Then, GRAIL performs the parameter tuning process on
the computed centroids (i.e., the dictionary) for various γ
values. For large dictionary sizes, we parallelize the com-
putation of each γ by distributing the eigendecomposition
of matrix W to spark executors. For small dictionary sizes,
because computation for each γ is fast, we let each execu-
tor compute different γ and report its score. For the next
step, GRAIL constructs representations Zd based on ac-
quired centroids and tuned parameters. We parallelize the
calculation of the E matrix by distributing X across execu-
tors and let each executor compute the pairwise similarities
between its small chunk of X and the d landmark time se-
ries. Next, we utilize distributed matrix multiplication to
compute Zd = EQWΛ−0.5

W . Note QW and ΛW are already
computed during parameter tuning.

Finally, GRAIL uses FD to approximate the eigendecom-

position of the Gram matrix K̂ and reduce the dimensional-
ity of data (i.e., learn Zk). We parallelize FD by distributing
Zd to executors, letting each executor compute the SVD in
batch, and we aggregate the results to obtain a sketch of
size b for Zd. We use the sketch to compute C locally, and
then distribute C and compute SVD in parallel to obtain
QC and ΛC . For the last step, we use again distributed
matrix multiplication to construct the representation Zk.

We now turn to the experimental evaluation of GRAIL.

5. EXPERIMENTAL SETTINGS
In this section, we review the settings for the evaluation

of (i) our kernel function, SINK; (ii) k-Shape as a dictionary
learning algorithm; (iii) our parameter selection approach;
(iv) GRAIL representations; and (v) five time-series mining
methods that exploit GRAIL representations.
Datasets: We use the 128 datasets from the UCR archive
[32], the largest collection of class-labeled time-series datasets.

Datasets span different domains, are z-normalized, and split
into training and test sets. Each dataset contains from 40 to
24, 000 sequences. We employ standardized resampling and
interpolation methods to fix issues with varying lengths and
missing values [90] that were deliberately left to reflect the
real world. The maximum sequence length is 2, 844. Every
sequence in each dataset belongs to only one class.
Platform: We ran our experiments on a cluster of 300
servers with an identical configuration: Dual Intel Xeon
E5-2650v4 (12-core with 2-way SMT) processor with clock
speed at 2.2 GHz and up to 128 GB RAM. Each server ran
Red Hat Linux 6.6 (64-bit) and Matlab R2018a (64-bit).
Implementation: We implemented all methods in Matlab
for a consistent evaluation. We also built GRAIL on top of
Apache Spark (using PySpark) for large-scale analysis. For
repeatability purposes, we make our source code available.1

Baselines: We compare SINK against the following state-
of-the-art distance measures and kernel functions for time
series: (i) SBD, an efficient, accurate, and parameter-free
distance measure [91]; (ii) cDTW, the constrained version
of DTW, with improved accuracy and efficiency [103]; and
(iii) GA, a state-of-the-art global alignment kernel [30].

Following [35, 119], we use the 1-NN classifier, which
is a simple and parameter-free classifier, to evaluate dis-
tance measures. Importantly, 1-NN classifiers, combined
with elastic distance measures, such as cDTW, achieve state-
of-the-art performance on time-series classification [126, 119,
9]. For kernel functions, we use the Support Vector Ma-
chine (SVM) classifier [26] as implemented by [23] to eval-
uate SINK (SVM+SINK) and GA (SVM+GA) kernels.
Additionally, we compare these approaches to the recently
proposed Elastic Ensemble (EE) classifier that combines 11
1-NN classifiers using several elastic distance measures [73]
and the COTE classifier that combines 35 classifiers [10].

We compare k-Shape against state-of-the-art sampling and
projection methods used to compute landmark vectors for
Nyström. Specifically, we consider the following sampling
methods: (i) Random, a simple and efficient uniform sam-
pling method [123]; (ii) AFKMC2, an approximate version
of the k-means++ sampling method [8]; (iii) GibbsDPP,
an approximate version of the Determinantal Point Pro-
cesses (DPP) sampling method [64, 1] that relies on Gibbs
sampling [69]; and (iv) LevScore, a non-uniform sampling
method based on leverage scores [47]. In addition, we con-
sider two projection methods: (i) a projection method based
on Fourier transform (SRFT) [47]; and (ii) a projection
method based on Gaussian Processes (GP) [47].

We evaluate GRAIL-PT, our parameter tuning method,
against three approaches for kernel function parameter esti-
mation: (i) MinVariance, a simple method to select kernel
function parameters such that the variance in data is mini-
mized; (ii) MaxVariance, a simple method to select kernel
function parameters such that the variance in data is maxi-
mized; and (iii) LOOCAcc, a supervised method to always
select kernel function parameters such that the leave-one-out
classification accuracy is maximized.

To understand the performance of GRAIL representations
in practice, we evaluate learned representations combined
with suitable kernel methods, in five major time-series min-
ing tasks. In addition, we perform an extensive experimen-
tation against different approaches proposed in the litera-
ture to learn representations for time series. Specifically,
we compute representations using the Shift-invariant Dic-
tionary Learning (SIDL) method [134], the Similarity Pre-

1
https://github.com/johnpaparrizos/GRAIL

serving Representation Learning method (SPIRAL) [68],
the Random Warping Series (RWS) [125], and the Encoder-
ADAPT deep learning method (EncoderA) [110], which
shares a very similar architecture to the Fully Convolutional
Neural Network (FCN) [121].

For querying, we compare GRAIL-LB, our lower bound
for SINK, against two state-of-the-art lower bounds for ED
and cDTW distance measures: (i) DFT-LB: a method that
uses Fourier transform to represent time series and uses
the first-k Fourier coefficients to lower bound ED [39]; and
(ii) Keogh-LB, the state-of-the-art lower bound for cDTW
[61]. The GRAIL-LB and DFT-LB methods operate over
low-dimensional representations, whereas Keogh-LB oper-
ates over the original raw time-series representation. For
classification, we evaluate GRAIL-SVM, our classifier that
exploits linear SVM [40] against the same classifiers that we
considered above to evaluate SINK. In addition, we com-
pare GRAIL-SVM against linear SVM classifiers trained
over SIDL (SIDL-SVM), SPIRAL (SPIRAL-SVM), and
RWS representations (RWS-SVM). For EncoderA, we
use the training and testing procedures as suggested in the
original paper [110]. For clustering, we compare GRAIL-
SC, a spectral clustering method [85] running over GRAIL
representations against two state-of-the-art clustering meth-
ods [91, 92]: (i) k-AVG+ED, the original, highly efficient,
but less accurate k-means clustering method [76]; and (ii)
k-Shape: an efficient and highly accurate time-series clus-
tering method [91]. In addition, we compare GRAIL-SC
against k-means methods running over SIDL (SIDL-KM),
SPIRAL (SPIRAL-KM), and RWS (RWS-KM) repre-
sentations. For sampling, we compare GRAIL-DPP, a
DPP sampling method [64, 1] running over GRAIL repre-
sentations against two state-of-the-art methods for approx-
imate sampling using the k-means++ mechanism, namely
AFKMC2, and the DPP method, namely GibbsDPP,
that we discussed earlier. Finally, for visualization, we com-
pare the approximation error (see below) between our repre-
sentations (GRAIL+Rep) when used to approximate the
exact KPCA method (KPCA+Rep) to visualize time se-
ries in two dimensions. In both approaches, Rep denotes the
representation used (e.g., GRAIL+Z95 denotes the GRAIL
representation, Zk, that explains 95% of the variance in Zd).
Parameter settings: Among the distance measures dis-
cussed above, cDTW requires setting a parameter to con-
strain its warping window. We compute the optimal win-
dow by performing a leave-one-out classification step over
the training set of each dataset (cDTWopt). To evaluate
SINK and GA kernels using SVM, we need to set a regu-
larization parameter C. We tune the C value in the training
set of each dataset using a grid search with power of two C
values ranging from −10 to 20 with step 0.11. For both ker-
nels, we consider scaling parameters ranging from 1 to 20.
We denote SINKw the version of SINK that operates over
a reduced number of Fourier coefficients computed to pre-
serve w% of the signal’s energy. For dictionary learning, all
methods select or construct the same number of landmark
time series for each dataset, which corresponds to 40% of
the number of time series in each dataset (capped to 100 for
large datasets). For the evaluation of the learned represen-
tations, we extract landmark time series using k-Shape and
GRAIL-PT to estimate parameters for SINK.

For querying, the GRAIL-LB and DFT-LB methods oper-
ate over low-dimensional representations with a fixed num-
ber of coordinates, 10, across each dataset. Keogh-LB op-
erates over raw time-series using cDTW5, the cDTW with
window 5% of the length of the time series of each dataset.

0 0.2 0.4 0.6 0.8 1.0

SVM+GA

0

0.2

0.4

0.6

0.8

1.0
S

V
M

+
S

IN
K

(a) Classification accuracy

10
-1

10
0

10
1

10
2

10
3

10
4

SVM+SINK

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

S
V

M
+

G
A

1x

100x

10x

1000x

(b) Runtime comparison

Figure 6: Comparison of SVM+SINK and SVM+GA classifiers
over 128 datasets.

1 2 3 4 5 6 7

COTE

SVM+SINK99

SVM+SINK

1-NN+SBD

1NN+cDTWOpt

SVM+GA

EE

Figure 7: Ranking of classifiers based on the average of their
ranks across datasets. The wiggly line connects methods that do
not perform statistically differently.

For classification, we set the regularization parameter C of
GRAIL-SVM using the same values for grid search as be-
fore and exploit GRAIL representations constructed using
d landmark time series. We use the same training proce-
dure for SIDL-SVM, SPIRAL-SVM, and RWS-SVM. We
tune additional parameters these methods require following
the recommended values from their corresponding papers.
The only difference is that we force the learned representa-
tions to have the same size as ours for a fair comparison.
For clustering and sampling, we use GRAIL representations
that explain f = 95% of the variance and we use the num-
ber of classes in each dataset as the number of clusters and
number of samples, respectively.
Metrics: We compare our approaches on runtime and ac-
curacy. For runtime, we compute CPU time utilization
and measure the time ratios for our comparisons for each
dataset. To evaluate classifiers, we report the classification
accuracy (i.e., number of correctly classified instances over
all instances) by performing classification over the training
and test sets of each dataset. To evaluate representations
we report the approximation error using the Frobenius norm
between the original kernel matrix K and the approximated

kernel K̂ = ZkZ
>
k . To visualize our results over the 128

datasets, we employ a min-max normalization to the ap-
proximation error to bound it between 0 and 1, and report
1 minus the error as an accuracy value. We use the Rand In-
dex (RI) [100] to evaluate clustering accuracy over the fused
training and test sets of each dataset. For clustering and
sampling, we report the average RI over 10 runs; in every
run we use a different random initialization.
Statistical analysis: Following [33, 91, 9], we use the
Wilcoxon test [122] with a 99% confidence level, a test that
is less affected by outliers than is the t-test [102], to evalu-
ate pairs of algorithms over multiple datasets. We also use
the Friedman test [43] followed by the post-hoc Nemenyi
test [84] with 95% confidence level for comparison of multi-
ple algorithms over multiple datasets.

6. EXPERIMENTAL RESULTS
In this section, we report our experimental results. We

aim to: (1) evaluate SINK against state-of-the-art distance

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Random

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k
-S

h
a

p
e

(a) k-Shape against Random

10 20 30 40 50 60 70 80 90 100

Number of samples

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A
b

s
o

lu
te

 F
ro

b
e

n
iu

s
 N

o
rm

 (
lo

g
 s

c
a

le
)

k-Shape

Random

AFKMC2

GibbsDPP

LevScore

SRFT

GP

(b) Approximation error on SLC

Figure 8: Comparison of dictionary learning algorithms.

1 2 3 4 5 6 7

k-Shape

SRFT
GP

GibbsDPP
LevScore
AFKMC2
Random

Figure 9: Ranking of dictionary learning algorithms based on the
average of their ranks across datasets.

and kernel functions (Section 6.1); (2) compare k-Shape
against dictionary learning methods (Section 6.2); (3) eval-
uate our parameter tuning method (Section 6.3); and (4)
evaluate GRAIL representations on five tasks: (i) querying;
(ii) classification; (iii) clustering; (iv) sampling; and (v) vi-
sualization (Section 6.4). Finally, we present our case study
(Section 6.5) and highlight our findings (Section 6.6).

6.1 Evaluation of Distance Measures
We evaluate the accuracy of SVM classifiers combined

with the SINK and GA kernels. Figure 6a presents the pair-
wise differences in accuracy over 128 datasets. SVM+SINK
outperforms SVM+GA in the vast majority of the datasets
(i.e., most circles, with each circle representing a dataset,
are above the diagonal) and Wilcoxon suggests this differ-
ence in accuracy is statistically significant. SVM+SINK also
significantly outperforms SVM+GA in terms of efficiency.
Specifically, Figure 6b shows that SVM+SINK is signifi-
cantly faster than SVM+GA2 across all datasets we con-
sidered with differences ranging between one order to three
orders of magnitude. Subsequently, we evaluate the perfor-
mance of all classifiers together. Figure 7 shows the average
rank across 85 out of 128 datasets (because accuracy values
for COTE and EE are only available for this subset). The
wiggly line represents no statistically significant differences
between the rankings according to Friedman followed by the
Nemenyi test. We observe three clusters of methods: COTE
forms the first cluster, SVM+SINK, SVM+SINK99, and EE
form the second cluster, and 1-NN+SBD, 1-NN+cDTWOpt,
and SVM+GA form the third cluster. COTE outperforms
the methods in the second cluster and, in turn, the methods
in the second cluster are significantly better than methods in
the third cluster. We observe no statistically significant dif-
ferences between SVM+SINK and SVM+SINK99, which in-
dicates no accuracy loss despite SINK99 operating only over
the first few Fourier coefficients. The number of coefficients
is determined for each dataset by retaining 99% of the energy
of the time series. On average, this step leads to 67% reduc-
tion in the size of required coefficients, which, in turn, results
on a 4.2x speedup of SVM+SINK99 against SVM+SINK.

2We used the C/Mex Matlab code provided by the author.

1 2 3 4

LOOCAcc
GRAIL-PT

MinVariance
MaxVariance

Figure 10: Ranking of parameter tuning methods based on the
average of their ranks, using accuracy as measure, across datasets.

1 2 3 4

MinVariance
GRAIL-PT

MaxVariance
LOOCAcc

Figure 11: Ranking of parameter tuning methods based on the
average of their ranks, using length as measure, across datasets.

We tested different energy levels for SINK and we observed
gradual reduction in accuracy as we compress more and
more the original time series (e.g., SINK90 becomes signif-
icantly less accurate than SINK). Additionally, we observe
variants of SINK, when combined with appropriate kernel
methods, to perform as accurate as EE, an ensemble of 11
classifiers. This is remarkably high performance for a stan-
dalone similarity function, which implies, as we will show,
that learning representations that preserve SINK, achieves
state-of-the-art performance on all five tasks we consider in
our analysis despite operating over low-dimensional (com-
pressed) representations. In contrast, variants of SINK are
significantly worse than COTE, a state-of-the-art classifier.
However, we note that COTE is an ensemble of 35 classi-
fiers. Considering how powerful SVM+SINK is, we believe a
new version of COTE that includes SINK and other kernel
functions omitted previously (e.g., GA) will result to new
state-of-the-art classification performance.

6.2 Evaluation of Dictionaries
Having shown the robustness of SINK, we now evaluate

the performance of k-Shape as a dictionary learning algo-
rithm. First, we evaluate k-Shape against Random, the
simplest, yet effective, method to sample time series. Fig-
ure 8a compares the two methods using their approxima-
tion error (transformed into accuracy as discussed in Sec-
tion 5). k-Shape outperforms Random in most datasets and
the Wilcoxon test suggests that this difference in accuracy
is statistically significant. To ensure that the performance
of k-Shape is not an artifact of choosing k landmark time
series as the number of classes per datasets, we perform
an additional experiment where we vary the number of k
landmark time series from 10 to 100. Figure 8b presents
the approximation error (transformed into accuracy as dis-
cussed in Section 5) on the StarLightCurve (SLC) dataset
(chosen randomly). We observe that k-Shape outperforms
all methods across all different values of k and that Wilcoxon
suggests that all differences in accuracy are statistically sig-
nificant. We observe similar behaviors across datasets.

To verify the superiority of k-Shape against the other
methods, we evaluate the significance of their differences
in accuracy when considered all together. Figure 9 shows
the average rank across datasets for each method. k-Shape
is the top method, meaning that k-Shape performed best in
the majority of the datasets. We observe three clusters of
methods whose ranks do not present a statistically signifi-
cant difference: SRFT and GP, the two projection methods,
form the first cluster; AFKMC2 and Random, two sampling
methods, form the second cluster; and GibbsDPP and Lev-
Score, two sampling methods, form the third cluster. The
methods in the first cluster are significantly better than the

1 2 3

GRAIL-LB DFT-LB
Keogh-LB

Figure 12: Ranking of lower bounding methods based on the
average of their ranks, using the pruning power as measure, across
datasets.

1 2 3 4 5

GRAIL-SVM
RWS-SVM

SIDL-SVM
SPIRAL-SVM

EncoderA

Figure 13: Ranking of representation methods for the classifica-
tion task based on the average of their ranks, using accuracy as
measure, across datasets.

methods in the second cluster and, in turn, the methods in
the second cluster are significantly better than the meth-
ods in the third cluster. Therefore, we can conclude that
projection methods outperform sampling methods for the
dictionary learning task and, importantly, k-Shape is the
only method that significantly outperforms all methods.

6.3 Evaluation of Parameter Estimation
We now turn our focus to our parameter selection method.

Figure 10 shows the average rank for each method using
their classification accuracy as measure. LOOCAcc, a su-
pervised method to select parameters using the training set
of each dataset, is ranked first, as expected, meaning that
LOOCAcc performed best in the majority of the datasets.
Interestingly, we observe that GRAIL-PT, our unsupervised
method to tune parameters, and MaxVariance achieve sim-
ilar classification accuracy to LOOCAcc. According to the
Friedman test followed by a post-hoc Nemenyi test to eval-
uate the significance of the differences in the ranks, only
MinVariance achieves a significant reduction in terms of ac-
curacy in comparison to the other methods.

Figure 11 presents the average rank across datasets for
each method using as measure the dimensionality (i.e., the
length) of the learned representations. We observe that Min-
Variance is ranked first meaning that MinVariance produces
the most compact representations in comparison to all other
methods. However, as we have seen previously, MinVariance
also leads to a significant loss in terms of classification accu-
racy. In contrast, we observe that GRAIL-PT produces rep-
resentations as compact as those from LOOCAcc, the super-
vised method to tune parameters. Importantly, GRAIL-PT
significantly outperforms MaxVariance in terms of the di-
mensionality of the learned representations, despite the sim-
ilar performance of GRAIL-PT and MaxVariance in terms
of classification accuracy. Therefore, we can conclude that
GRAIL-PT is the only unsupervised method that produces
accurate and compact representations, similar to those pro-
duced in a supervised manner by LOOCAcc. In contrast,
MaxVariance and MinVariance produce either very high-
dimensional representations or very low-dimensional rep-
resentations, respectively. Very low-dimensional represen-
tations are desirable. Unfortunately, MinVariance is not
competitive in terms of accuracy when selecting such low-
dimensional representations.

6.4 Evaluation of GRAIL on Five Tasks
Having shown the robustness of all critical components of

GRAIL, we now focus our evaluation on the performance of
the learned representation for five time-series mining tasks.

1 2 3 4

SVM+SINK

GRAIL-SVM

1-NN+SBD
SVM+GA

Figure 14: Ranking of classification methods based on the average
of their ranks, using accuracy as measure, across datasets.

Querying: We evaluate GRAIL-LB, our lower bound
for SINK against state-of-the-art lower bounds for ED and
cDTW. We use as measure the pruning power (i.e., the num-
ber of comparisons the methods avoid from all possible pair-
wise comparisons). Figure 12, shows that GRAIL-LB sig-
nificantly outperforms Keogh-LB, a method to lower bound
DTW as well as the state-of-the-art representation method
for ED, namely DFT-LB. This is a critical achievement as,
to the best of our knowledge, this is the first time that the
construction of lower bounding measures is automated and,
importantly, leads to signficantly better results than exist-
ing hand-crafted solutions.
Classification: Figure 13 compares the performance of
GRAIL representations against state-of-the-art representa-
tion learning methods for the classification task. We ob-
serve that RWS-SVM, SPIRAL-RWS, and EncoderA meth-
ods perform similarly while SIDL-SVM is significantly worse
than all other methods. Interestingly, GRAIL-SVM outper-
forms significantly all methods. To understand this result,
in Figure 14 we show that GRAIL-SVM, our SVM classifier
over GRAIL representations achieves very similar perfor-
mance to SVM+SINK (as GRAIL-SVM essentially approx-
imates the accuracy of SVM+SINK), indicating the robust-
ness of GRAIL representations for this task. Importantly,
GRAIL-SVM outperforms significantly SVM+GA and 1-
NN+SBD methods, showing that despite operating over re-
duced dimensionality, GRAIL-SVM performs better than
methods operating over the original, high-dimensional, time
series. In contrast, RWS-SVM, which is inspired by the
GA kernel, performs significantly worse than SVM+SINK.
SPIRAL-SVM is a parameter-free method and therefore the
benefit of using SVMs is limited. SIDL-SVM relies on shift-
invariant properties similar to out method, however, the
tuned parameters did not reveal any significant improve-
ments in performance. Finally, for the EncoderA method,
we report worse results than what appears in the original
paper (i.e., EncoderA performs similarly to COTE) because
we enforce the representations of EncoderA to have limited
size (similar to ours).
Clustering: We evaluate GRAIL-SC, our spectral clus-
tering algorithm against k-Shape and k-AVG+ED. Figure
15a shows that GRAIL-SC, despite operating over a low-
dimensional representation, performs similarly to k-Shape,
a highly accurate and efficient time-series clustering method.
Importantly, due to the reduced dimensionality of time se-
ries, GRAIL-SC leads to a significantly faster algorithm
to cluster time series than the k-Shape algorithm (Figure
15b). GRAIL-SC is the only method that significantly out-
performs k-AVG+ED and achieves similar accuracy perfor-
mance to k-Shape. All other methods, namely, SPIRAL-
KM, RWS-KM, and SIDL-KM, perform similar to or worse
than k-AVG+ED (Figure 16). SPIRAL-KM and RWS-KM
achieve similar results to k-AVG+ED, however, SIDL-KM,
performs significantly worse.
Sampling: We evaluate GRAIL-DPP, our DPP-based
sampling method against two state-of-the-art methods for
approximate sampling using the k-means++ mechanism and

0.4 0.6 0.8 1.0
k-Shape

0.4

0.6

0.8

1.0

G
R

A
IL

-S
C

(a) Rand Index accuracy

10
-2

10
0

10
2

GRAIL-SC

10
-2

10
0

10
2

10
4

k
-S

h
a

p
e

10x

1x

100x

(b) Runtime

Figure 15: Comparison of clustering algorithms.

1 2 3 4 5

GRAIL-SC
SPIRAL-KM

SIDL-KM
RWS-KM
k-AVG+ED

Figure 16: Ranking of clustering methods based on the average
of their ranks across datasets.

the DPP method. Figure 17 considers all methods together.
GRAIL-DPP outperforms both methods. AFKMC2 and
GibbsDPP show no significant differences.
Visualization: We evaluate the performance of GRAIL
representations against representations produced using the
exact KPCA for the purpose of visualization. Figure 18
presents the average rank across datasets for two KPCA-
Z85, KPCA-Z90, GRAIL-Z90, and GRAIL-Z95. We ob-
serve that KPCA-Z90 is ranked first, meaning that KPCA-
Z90 had the best approximation error in the majority of the
datasets. GRAIL-Z95 is ranked second, followed by KPCA-
Z85, but the difference in their approximation error is not
statistically significant. Therefore, we observe that GRAIL
representations must explain larger percentages of the vari-
ance in data to achieve visualization performance similar to
that of exact representations, an expected result considering
that GRAIL is an approximate method.

6.5 Case Study on 10M Time Series
We now demonstrate the scalability of GRAIL using Spark.

Through a collaboration with a prominent energy provider
at Illinois, we obtained access to TBs of energy smart me-
ter data that contain the energy usage of clients for a pe-
riod of two years. We created a dataset of ten million time
series (clients’ data across different weeks) with length of
1000 energy measurements. We performed two experiments
to demonstrate the scalability of GRAIL across different di-
mensions using machines from our cluster (see Section 5).
For both experiments we report the runtime for learning
GRAIL representations and performing k-means clustering
over the learned representations to group clients together
based on their energy usage patterns. In Figure 19a, we
utilize 100 cores (5 machines) to show how our framework
scales with increasing dataset sizes (from 10K to 10M time
series) and dictionary sizes of 100, 500, and 1000. We ob-
serve that our framework scale linearly with increasing data
size and that the size of dictionary doesn’t effect the scalabil-
ity. In Figure 19b, we keep the dataset fixed but changed the
length of time series into consideration. We observed that
our framework scales linearly when more cores are available
and the length does not effect the scalability.

1 2 3

GRAIL-DPP AFKMC2
GibbsDPP

Figure 17: Ranking of sampling methods based on the average of
their ranks, using the approximation error as measure.

1 2 3 4

KPCA-Z90
GRAIL-Z95

GRAIL-Z90
KPCA-Z85

Figure 18: Ranking of representation methods based on the av-
erage of their ranks, using the approximation error as measure.

6.6 Summary of Experimental Evaluation
In short, our experimental evaluation suggests that: (1)

kernel methods combined with suitable kernel functions, such
as SINK, significantly outperform state-of-the-art distance
measures combined with 1-NN classifiers; (2) cluster cen-
troids, such as those computed using k-Shape, can effec-
tively serve as dictionaries of landmark time series for rep-
resentation learning tasks; (3) unsupervised tuning of kernel
function parameters leads to accurate and compact time-
series representations; (4) GRAIL learns time-series repre-
sentations that are more compact and more accurate than
state-of-the-art representations; (5) GRAIL representations
achieve excellent pruning of time-series comparisons; (6)
GRAIL representations, combined with suitable methods
achieve high accurate and significantly improves the runtime
of algorithms while operating over low-dimensional repre-
sentations; (7) GRAIL is suitable for large-scale time-series
analytics as it scales linearly across all its parameters with
increasingly larger datasets.

7. RELATED WORK
We focused on efficient representation learning from time

series. Beyond unsupervised approaches, traditional model-
based approaches assume a model, which is often expressed
in the form of analytical equations with parameters, to de-
scribe time series and use the estimated parameters of such
model as features in time-series mining tasks [66]. There is
a plethora of model-based approaches in the literature [55,
17, 44] that rely on different models to serve different appli-
cation needs, such as Hidden Markov Models [97], Gaussian
Process models [18], and autoregressive models [75]. Unfor-
tunately, unrealistic assumptions of such models combined
with their limited power to model highly complex and high-
dimensional time series with analytical equations, impact
the effectiveness of model-based approaches as standalone
feature extraction methods for real-world problems [66].

As a consequence, there has been significant effort in time-
series literature to extract generic features to represent time
series using combinations of statistical measures that sum-
marize different time-series properties, including their dis-
tribution, correlation structure, stationarity, entropy, and
fitting to a range of different time-series models [83, 120, 34,
46, 45]. Despite the effectiveness of such methods for clas-
sification and forecasting tasks, where the supervised selec-
tion of features reduces the dimensionality of feature vectors
and increases accuracy, these approaches are not competi-
tive for unsupervised tasks. Similarly, many time-series clas-
sification methods involve operations for feature extraction.
We refer the reader to [9] for a great survey and evalua-
tion of such approaches. Unfortunately, for unsupervised

10K 100K 1M 10M
Size of the dataset

0

1

2

3

4

R
u
n
ti
m

e
 (

in
 l
o
g
 s

c
a
le

)

D: 100

D: 500

D: 1000

(a) Varying dictionary size

20 40 60 80 100
Number of cores

2.0

2.5

3.0

3.5

4.0

4.5

R
u
n
ti
m

e
 (

in
 l
o
g
 s

c
a
le

)

L: 1000

L: 500

(b) Varying length

Figure 19: Runtime results for GRAIL over Spark.

settings, such methods are not competitive, as it was shown
for shapelet-based clustering methods [92].

Alternative approaches to learn feature representations
rely on deep learning methods [132, 15, 14, 13, 41, 12]. An
advantage of these methods is that they can learn multi-
ple layers of feature representations. A recent deep learn-
ing method, namely Encoder [110], has achieved similar ac-
curacy performance to the state-of-the-art COTE classifier
[10]. Unfortunately, when we limit the size of the representa-
tions (to match GRAIL’s size) this method is no longer com-
petitive. There are many different architectures for learning
representations with neural networks. We refer the reader to
[66] for a thorough review. Recently, a number of approaches
have been proposed to learn representations for time series
that are related to our method. SIDL [134] attempts to cap-
ture informative local patterns in different locations of time
series and relies on sparse coding to learn representations.
SPIRAL [68], similarly to our method, learns representa-
tions for time series by preserving their DTW distances.
Finally, RWS [125, 124], builds on the RFF kernel method
described in Section 2 to learn representations.

8. CONCLUSIONS
In this paper, we addressed the problem of efficiently

learning data-aware representations. First, we developed
SINK, a fast kernel function to compare time series under
shift invariances. We constructed landmark time series using
effective time-series clustering and we presented a method to
estimate kernel function parameters and improve the com-
pactness of the representations. Then, we learned repre-
sentations using GRAIL by exploiting approximations for
kernel methods. Finally, we showed how GRAIL represen-
tations accelerate kernel methods for five major time-series
mining tasks. We evaluated our ideas by conducting an
extensive experimental evaluation on 128 datasets using a
rigorous statistical analysis. Additionally, we implemented
GRAIL over Apache Spark to analyze real-world IoT data.
Our findings suggest that by using SINK and GRAIL, we
can significantly outperform existing state-of-the-art meth-
ods for querying, classification, clustering, sampling, and
visualization of time series. GRAIL emerges as a new prim-
itive capable to unify the design of time-series methods.
Acknowledgments: We thank the anonymous reviewers whose

comments have greatly improved this manuscript. We also thank

Christos Faloutsos and Eamonn Keogh for useful discussions and

Luis Gravano and Daniel Hsu for invaluable feedback. We grate-

fully acknowledge the contribution of Yiyang Ou in the imple-

mentation of GRAIL over Apache Spark. This research was sup-

ported in part by NetApp, Cisco, and an NSF CISE Expeditions

Award CCF-1139158. Part of this work was done while J.P. was

at Columbia University using computing resources from Columbia

University’s Shared Research Computing Facility project.

9. REFERENCES
[1] R. H. Affandi, A. Kulesza, E. Fox, and B. Taskar.

Nystrom approximation for large-scale determinantal
processes. In Artificial Intelligence and Statistics,
pages 85–98, 2013.

[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
similarity search in sequence databases. FODA, pages
69–84, 1993.

[3] A. Aizerman, E. Braverman, and L. Rozoner.
Theoretical foundations of the potential function
method in pattern recognition learning. Automation
and Remote Control, 25:821–837, 1964.

[4] S. Alam, F. D. Albareti, C. A. Prieto, F. Anders,
S. F. Anderson, T. Anderton, B. H. Andrews,

E. Armengaud, É. Aubourg, S. Bailey, et al. The
eleventh and twelfth data releases of the sloan digital
sky survey: final data from sdss-iii. The Astrophysical
Journal Supplement Series, 219(1):12, 2015.

[5] T. Argyros and C. Ermopoulos. Efficient subsequence
matching in time series databases under time and
amplitude transformations. In ICDM, pages 481–484.
IEEE, 2003.

[6] O. T. at Twitter. Observability at Twitter: technical
overview, part I, 2016.

[7] F. R. Bach and M. I. Jordan. Predictive low-rank
decomposition for kernel methods. In ICML, pages
33–40. ACM, 2005.

[8] O. Bachem, M. Lucic, H. Hassani, and A. Krause.
Fast and provably good seedings for k-means. In
NeurIPS, pages 55–63, 2016.

[9] A. Bagnall, J. Lines, A. Bostrom, J. Large, and
E. Keogh. The great time series classification bake
off: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge
Discovery, 31(3):606–660, 2017.

[10] A. Bagnall, J. Lines, J. Hills, and A. Bostrom.
Time-series classification with cote: the collective of
transformation-based ensembles. IEEE Transactions
on Knowledge and Data Engineering,
27(9):2522–2535, 2015.

[11] C. Bahlmann, B. Haasdonk, and H. Burkhardt.
Online handwriting recognition with support vector
machines-a kernel approach. In Frontiers in
handwriting recognition, 2002. proceedings. eighth
international workshop on, pages 49–54. IEEE, 2002.

[12] R. Bamler and S. Mandt. Improving optimization in
models with continuous symmetry breaking. In
ICML, pages 432–441, 2018.

[13] Y. Bengio, A. C. Courville, and P. Vincent.
Unsupervised feature learning and deep learning: A
review and new perspectives. CoRR, abs/1206.5538,
1, 2012.

[14] Y. Bengio, P. Lamblin, D. Popovici, and
H. Larochelle. Greedy layer-wise training of deep
networks. In NeurIPS, pages 153–160, 2007.

[15] Y. Bengio, Y. LeCun, et al. Scaling learning
algorithms towards ai. Large-scale kernel machines,
34(5):1–41, 2007.

[16] B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel,
C. Kelly, S. M. Smith, C. F. Beckmann, J. S.
Adelstein, R. L. Buckner, S. Colcombe, et al. Toward
discovery science of human brain function.
Proceedings of the National Academy of Sciences,
107(10):4734–4739, 2010.

[17] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M.
Ljung. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

[18] S. Brahim-Belhouari and A. Bermak. Gaussian
process for nonstationary time series prediction.
Computational Statistics & Data Analysis,
47(4):705–712, 2004.

[19] Y. Cai and R. Ng. Indexing spatio-temporal
trajectories with chebyshev polynomials. In
SIGMOD, pages 599–610. ACM, 2004.

[20] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh.
isax 2.0: Indexing and mining one billion time series.
In ICDM, pages 58–67. IEEE, 2010.

[21] F.-P. Chan, A.-C. Fu, and C. Yu. Haar wavelets for
efficient similarity search of time-series: with and
without time warping. IEEE Transactions on
Knowledge and Data Engineering, 15(3):686–705,
2003.

[22] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. In ICDE, pages 126–133.
IEEE, 1999.

[23] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):27, 2011.

[24] L. Chen and R. Ng. On the marriage of lp-norms and
edit distance. In VLDB, pages 792–803. VLDB
Endowment, 2004.

[25] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, pages 491–502, 2005.

[26] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[27] T. F. Cox and M. A. Cox. Multidimensional scaling.
CRC press, 2000.

[28] N. Cristianini and J. Shawe-Taylor. An introduction
to support vector machines and other kernel-based
learning methods. Cambridge university press, 2000.

[29] J. P. Cunningham and Z. Ghahramani. Linear
dimensionality reduction: survey, insights, and
generalizations. Journal of Machine Learning
Research, 16(1):2859–2900, 2015.

[30] M. Cuturi. Fast global alignment kernels. In ICML,
pages 929–936, 2011.

[31] M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui. A
kernel for time series based on global alignments. In
ICASSP, volume 2, pages II–413. IEEE, 2007.

[32] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh,
Y. Zhu, S. Gharghabi, C. A. Ratanamahatana,
Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen,
and G. Batista. The ucr time series classification
archive, October 2018. https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/.
[33] J. Demšar. Statistical comparisons of classifiers over

multiple data sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

[34] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A
time series forest for classification and feature
extraction. Information Sciences, 239:142–153, 2013.

[35] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
and E. Keogh. Querying and mining of time series
data: experimental comparison of representations
and distance measures. PVLDB, 1(2):1542–1552,
2008.

[36] R. Ding, Q. Wang, Y. Dang, Q. Fu, H. Zhang, and
D. Zhang. Yading: Fast clustering of large-scale time

series data. PVLDB, 8(5):473–484, 2015.
[37] P. Drineas and M. W. Mahoney. On the nyström

method for approximating a gram matrix for
improved kernel-based learning. journal of machine
learning research, 6(Dec):2153–2175, 2005.

[38] P. Esling and C. Agon. Time-series data mining.
ACM Computing Surveys, 45(1):12, 2012.

[39] C. Faloutsos, M. Ranganathan, and
Y. Manolopoulos. Fast subsequence matching in
time-series databases. In SIGMOD, pages 419–429,
1994.

[40] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research,
9(Aug):1871–1874, 2008.

[41] M. Fiterau, J. Fries, E. Halilaj, N. Siranart,
S. Bhooshan, and C. Re. Similarity-based lstms for
time series representation learning in the presence of
structured covariates. In 29th Conference on Neural
Information Processing Systems, 2016.

[42] C. Fowlkes, S. Belongie, F. Chung, and J. Malik.
Spectral grouping using the nystrom method. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 26(2):214–225, 2004.

[43] M. Friedman. The use of ranks to avoid the
assumption of normality implicit in the analysis of
variance. Journal of the American Statistical
Association, 32:675–701, 1937.

[44] B. D. Fulcher. Feature-based time-series analysis.
arXiv preprint arXiv:1709.08055, 2017.

[45] B. D. Fulcher and N. S. Jones. Highly comparative
feature-based time-series classification. IEEE
Transactions on Knowledge and Data Engineering,
26(12):3026–3037, 2014.

[46] B. D. Fulcher, M. A. Little, and N. S. Jones. Highly
comparative time-series analysis: the empirical
structure of time series and their methods. Journal of
The Royal Society Interface, 10(83):20130048, 2013.

[47] A. Gittens and M. W. Mahoney. Revisiting the
nyström method for improved large-scale machine
learning. J. Mach. Learn. Res, 28(3):567–575, 2013.

[48] D. Q. Goldin and P. C. Kanellakis. On similarity
queries for time-series data: constraint specification
and implementation. In CP, pages 137–153. Springer,
1995.

[49] G. H. Golub and C. F. Van Loan. Matrix
computations, volume 3. JHU Press, 2012.

[50] B. Haasdonk and C. Bahlmann. Learning with
distance substitution kernels. In DAGM-Symposium,
volume 3175, pages 220–227. Springer, 2004.

[51] J. Han, J. Pei, and M. Kamber. Data mining:
concepts and techniques. Elsevier, 2011.

[52] D. Haussler. Convolution kernels on discrete
structures. Technical report, Technical report,
Department of Computer Science, University of
California at Santa Cruz, 1999.

[53] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel
methods in machine learning. The annals of
statistics, pages 1171–1220, 2008.

[54] H. Hotelling. Analysis of a complex of statistical
variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

[55] R. J. Hyndman and G. Athanasopoulos. Forecasting:
principles and practice. OTexts, 2014.

[56] A. K. Jain. Fundamentals of digital image processing.
Prentice-Hall, Inc., 1989.

[57] E. Keogh, K. Chakrabarti, M. Pazzani, and
S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases.
Knowledge and information Systems, 3(3):263–286,
2001.

[58] E. Keogh, K. Chakrabarti, M. Pazzani, and
S. Mehrotra. Locally adaptive dimensionality
reduction for indexing large time series databases.
ACM Sigmod Record, 30(2):151–162, 2001.

[59] E. Keogh and S. Kasetty. On the need for time series
data mining benchmarks: a survey and empirical
demonstration. Data Mining and knowledge
discovery, 7(4):349–371, 2003.

[60] E. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos,
and M. Cardle. Indexing large human-motion
databases. In VLDB, VLDB ’04, pages 780–791.
VLDB Endowment, 2004.

[61] E. Keogh and C. A. Ratanamahatana. Exact
indexing of dynamic time warping. Knowledge and
information systems, 7(3):358–386, 2005.

[62] S.-W. Kim, S. Park, and W. W. Chu. An
index-based approach for similarity search
supporting time warping in large sequence databases.
In ICDE, pages 607–614. IEEE, 2001.

[63] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time
sequences. In SIGMOD, SIGMOD ’97, pages
289–300, New York, NY, USA, 1997. ACM.

[64] A. Kulesza and B. Taskar. Structured determinantal
point processes. In NeurIPS, pages 1171–1179, 2010.

[65] S. Kumar, M. Mohri, and A. Talwalkar. Sampling
methods for the nyström method. Journal of
Machine Learning Research, 13(Apr):981–1006, 2012.

[66] M. Längkvist, L. Karlsson, and A. Loutfi. A review
of unsupervised feature learning and deep learning
for time-series modeling. Pattern Recognition Letters,
42:11–24, 2014.

[67] J. A. Lee and M. Verleysen. Nonlinear dimensionality
reduction. Springer Science & Business Media, 2007.

[68] Q. Lei, J. Yi, R. Vaculin, L. Wu, and I. S. Dhillon.
Similarity preserving representation learning for time
series analysis. arXiv preprint arXiv:1702.03584,
2017.

[69] C. Li, S. Jegelka, and S. Sra. Fast dpp sampling for
nystr\” om with application to kernel methods.
arXiv preprint arXiv:1603.06052, 2016.

[70] T. W. Liao. Clustering of time series dataa survey.
Pattern recognition, 38(11):1857–1874, 2005.

[71] E. Liberty. Simple and deterministic matrix
sketching. In SIGKDD, pages 581–588. ACM, 2013.

[72] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A
symbolic representation of time series, with
implications for streaming algorithms. In Proceedings
of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, pages
2–11. ACM, 2003.

[73] J. Lines and A. Bagnall. Time series classification
with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery, 29(3):565–592,
2015.

[74] C. Loboz, S. Smyl, and S. Nath. Datagarage:
Warehousing massive performance data on

commodity servers. PVLDB, 3(1-2):1447–1458, 2010.
[75] H. Lütkepohl. New introduction to multiple time

series analysis. Springer Science & Business Media,
2005.

[76] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In BSMSP,
pages 281–297, 1967.

[77] M. S. Mahdavinejad, M. Rezvan, M. Barekatain,
P. Adibi, P. Barnaghi, and A. P. Sheth. Machine
learning for internet of things data analysis: A
survey. Digital Communications and Networks, 2017.

[78] V. Megalooikonomou, G. Li, and Q. Wang. A
dimensionality reduction technique for efficient
similarity analysis of time series databases. In CIKM,
pages 160–161. ACM, 2004.

[79] V. Megalooikonomou, Q. Wang, G. Li, and
C. Faloutsos. A multiresolution symbolic
representation of time series. In ICDE, pages
668–679. IEEE, 2005.

[80] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in
apache spark. The Journal of Machine Learning
Research, 17(1):1235–1241, 2016.

[81] J. Mercer. Functions of positive and negative type,
and their connection with the theory of integral
equations. Philosophical transactions of the royal
society of London. Series A, containing papers of a
mathematical or physical character, 209:415–446,
1909.

[82] C. Musco and C. Musco. Recursive sampling for the
nystrom method. In NeurIPS, pages 3833–3845, 2017.

[83] A. Nanopoulos, R. Alcock, and Y. Manolopoulos.
Feature-based classification of time-series data.
International Journal of Computer Research,
10(3):49–61, 2001.

[84] P. Nemenyi. Distribution-free Multiple Comparisons.
PhD thesis, Princeton University, 1963.

[85] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In NeurIPS,
pages 849–856, 2002.

[86] E. J. Nyström. Über die praktische auflösung von
integralgleichungen mit anwendungen auf
randwertaufgaben. Acta Mathematica, 54(1):185–204,
1930.

[87] D. Oglic and T. Gärtner. Nyström method with
kernel k-means++ samples as landmarks. In
D. Precup and Y. W. Teh, editors, ICML, volume 70
of Proceedings of Machine Learning Research, pages
2652–2660, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

[88] A. V. Oppenheim and R. W. Schafer. Discrete-Time
Signal Processing. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition, 2009.

[89] T. Palpanas. Data series management: the road to
big sequence analytics. ACM SIGMOD Record,
44(2):47–52, 2015.

[90] J. Paparrizos. 2018 ucr time-series archive: Backward
compatibility, missing values, and varying lengths,
January 2019. https:
//github.com/johnpaparrizos/UCRArchiveFixes.

[91] J. Paparrizos and L. Gravano. k-shape: Efficient and
accurate clustering of time series. In SIGMOD, pages
1855–1870. ACM, 2015.

[92] J. Paparrizos and L. Gravano. Fast and accurate
time-series clustering. ACM Transactions on
Database Systems (TODS), 42(2):8, 2017.

[93] K. Pearson. Liii. on lines and planes of closest fit to
systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[94] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro,
Q. Huang, J. Meza, and K. Veeraraghavan. Gorilla:
A fast, scalable, in-memory time series database.
PVLDB, 8(12):1816–1827, 2015.

[95] D. B. Percival and A. T. Walden. Wavelet methods
for time series analysis, volume 4. Cambridge
university press, 2006.

[96] I. Popivanov and R. J. Miller. Similarity search over
time-series data using wavelets. In ICDE, pages
212–221. IEEE, 2002.

[97] L. Rabiner and B. Juang. An introduction to hidden
markov models. IEEE ASSP Magazine, 3(1):4–16,
1986.

[98] A. Rahimi and B. Recht. Random features for
large-scale kernel machines. In NeurIPS, pages
1177–1184, 2008.

[99] T. Rakthanmanon, B. Campana, A. Mueen,
G. Batista, B. Westover, Q. Zhu, J. Zakaria, and
E. Keogh. Searching and mining trillions of time
series subsequences under dynamic time warping. In
SIGKDD, pages 262–270. ACM, 2012.

[100] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

[101] K. V. Ravi Kanth, D. Agrawal, and A. Singh.
Dimensionality reduction for similarity searching in
dynamic databases. In SIGMOD, SIGMOD ’98,
pages 166–176, New York, NY, USA, 1998. ACM.

[102] J. Rice. Mathematical statistics and data analysis.
Cengage Learning, 2006.

[103] H. Sakoe and S. Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE transactions on acoustics, speech, and signal
processing, 26(1):43–49, 1978.

[104] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. Ftw:
fast similarity search under the time warping
distance. In PODS, pages 326–337. ACM, 2005.

[105] P. Schäfer and M. Högqvist. Sfa: a symbolic fourier
approximation and index for similarity search in high
dimensional datasets. In EDBT, pages 516–527.
ACM, 2012.

[106] B. Schölkopf. The kernel trick for distances. In
NeurIPS, pages 301–307, 2001.

[107] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel
principal component analysis. In ICANN, pages
583–588. Springer, 1997.

[108] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural computation, 10(5):1299–1319, 1998.

[109] B. Schölkopf and A. J. Smola. Learning with kernels:
support vector machines, regularization, optimization,
and beyond. MIT press, 2002.

[110] J. Serrà, S. Pascual, and A. Karatzoglou. Towards a
universal neural network encoder for time series. In
CCIA, pages 120–129, 2018.

[111] D. Shasha and Y. Zhu. High Performance Discovery
In Time Series: Techniques And Case Studies

(Monographs in Computer Science). SpringerVerlag,
2004.

[112] H. Shatkay and S. B. Zdonik. Approximate queries
and representations for large data sequences. In
ICDE, pages 536–545. IEEE, 1996.

[113] H. Shimodaira, K.-i. Noma, M. Nakai, and
S. Sagayama. Dynamic time-alignment kernel in
support vector machine. In NeurIPS, pages 921–928,
2002.

[114] K. Shin and T. Kuboyama. A generalization of
haussler’s convolution kernel: mapping kernel. In
ICML, pages 944–951. ACM, 2008.

[115] Z. R. Struzik and A. Siebes. Measuring time series
similarity through large singular features revealed
with wavelet transformation. In Database and Expert
Systems Applications, 1999. Proceedings. Tenth
International Workshop on, pages 162–166. IEEE,
1999.

[116] W. S. Torgerson. Multidimensional scaling: I. theory
and method. Psychometrika, 17(4):401–419, 1952.

[117] M. Vlachos, D. Gunopulos, and G. Das. Indexing
time-series under conditions of noise. Data mining in
time series databases, 57:67–100, 2004.

[118] G. Wachman, R. Khardon, P. Protopapas, and C. R.
Alcock. Kernels for periodic time series arising in
astronomy. In ECML-PKDD, pages 489–505.
Springer, 2009.

[119] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance
measures for time series data. Data Mining and
Knowledge Discovery, pages 1–35, 2013.

[120] X. Wang, K. Smith, and R. Hyndman.
Characteristic-based clustering for time series data.
Data Mining and Knowledge Discovery,
13(3):335–364, 2006.

[121] Z. Wang, W. Yan, and T. Oates. Time series
classification from scratch with deep neural networks:
A strong baseline. In IJCNN, pages 1578–1585.
IEEE, 2017.

[122] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, pages 80–83, 1945.

[123] C. K. Williams and M. Seeger. Using the nyström
method to speed up kernel machines. In NeurIPS,

pages 682–688, 2001.
[124] L. Wu, I. E.-H. Yen, F. Xu, P. Ravikumar, and

M. Witbrock. D2ke: From distance to kernel and
embedding. arXiv preprint arXiv:1802.04956, 2018.

[125] L. Wu, I. E.-H. Yen, J. Yi, F. Xu, Q. Lei, and
M. Witbrock. Random warping series: A random
features method for time-series embedding. In
AISTATS, pages 793–802, 2018.

[126] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A.
Ratanamahatana. Fast time series classification using
numerosity reduction. In ICML, pages 1033–1040.
ACM, 2006.

[127] Q. Yang and X. Wu. 10 challenging problems in data
mining research. International Journal of
Information Technology & Decision Making,
5(04):597–604, 2006.

[128] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H.
Zhou. Nyström method vs random fourier features:
A theoretical and empirical comparison. In NeurIPS,
pages 476–484, 2012.

[129] B.-K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp norms. VLDB, 2000.

[130] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time
warping. In ICDE, pages 201–208. IEEE, 1998.

[131] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, pages 2–2. USENIX
Association, 2012.

[132] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting
with artificial neural networks:: The state of the art.
International Journal of Forecasting, 14(1):35–62,
1998.

[133] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved
nyström low-rank approximation and error analysis.
In ICML, pages 1232–1239. ACM, 2008.

[134] G. Zheng, Y. Yang, and J. Carbonell. Efficient
shift-invariant dictionary learning. In SIGKDD,
pages 2095–2104. ACM, 2016.

[135] K. Zoumpatianos, S. Idreos, and T. Palpanas.
Indexing for interactive exploration of big data series.
In SIGMOD, pages 1555–1566. ACM, 2014.

