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ABSTRACT
Distance measures are core building blocks in time-series
analysis and the subject of active research for decades. Unfor-
tunately, the most detailed experimental study in this area is
outdated (over a decade old) and, naturally, does not reflect
recent progress. Importantly, this study (i) omitted multiple
distance measures, including a classic measure in the time-
series literature; (ii) considered only a single time-series nor-
malization method; and (iii) reported only raw classification
error rates without statistically validating the findings, re-
sulting in or fueling four misconceptions in the time-series
literature. Motivated by the aforementioned drawbacks and
our curiosity to shed some light on these misconceptions, we
comprehensively evaluate 71 time-series distance measures.
Specifically, our study includes (i) 8 normalization methods;
(ii) 52 lock-step measures; (iii) 4 sliding measures; (iv) 7 elas-
tic measures; (v) 4 kernel functions; and (vi) 4 embedding
measures. We extensively evaluate these measures across
128 time-series datasets using rigorous statistical analysis.
Our findings debunk four long-standing misconceptions that
significantly alter the landscape of what is known about ex-
isting distance measures. With the new foundations in place,
we discuss open challenges and promising directions.
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1 INTRODUCTION
The understanding of a multitude of natural or human-made
processes involves the analysis of observations over time.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3389760

Measure
Category

Category
Cardinality

Scaling
Methods [45]

Lock-step 52 8 4 (1)
Sliding 4 8 ✘

Elastic 7 1 5 (1)
Kernel 4 1 ✘

Embedding 4 1 ✘

Table 1: Summary of our comprehensive experimental eval-
uation across 128 datasets. Last column shows summary of
category cardinality and scaling methods (in parentheses)
evaluated previously in [45] across 38 datasets.

The recording of such time-varying measurements leads in
an ordered sequence of data points called time series or, more
generally, data series, to include sequences ordered on dimen-
sions other than time [105, 106]. In the last decades, time-
series analysis has become increasingly prevalent, affecting
virtually all scientific disciplines and their corresponding
industries [41], including astronomy [4, 67, 142], biology
[13–15, 49], economics [22, 56, 89, 91, 125, 134, 138], energy
sciences [6, 9, 94], engineering [70, 97, 121, 139, 150], envi-
ronmental sciences [58, 61, 64, 65, 99, 124, 148], medicine
[36, 113, 123], neuroscience [19, 77], and social sciences
[22, 95]. With sensors and devices becoming increasingly
networked and with the explosion of Internet-of-Things (IoT)
applications, the volume of produced time series is expected
to continue to rise [90]. This unprecedented growth and
ubiquity of time series generates tremendous interest in the
extraction of meaningful knowledge from time series.
The basis for most analytics over time series involves

the detection of similarities between time series. The mea-
surement of similarity, through a distance or similarity mea-
sure, is the most fundamental building block in time-series
data mining, fueling tasks such as querying [2, 33, 45, 71,
76, 78, 84, 96, 107, 118, 136, 143], indexing [24, 25, 29, 48,
51, 72, 73, 75, 86, 117, 129, 135, 140, 146, 164], clustering
[5, 12, 46, 69, 74, 85, 110, 116, 145, 147, 153, 161], classifi-
cation [11, 63, 66, 87, 101, 109, 120, 156], motif discovery
[17, 31, 86, 102, 157, 158], and anomaly detection [21, 40, 88,
133, 155, 157]. In contrast to other data types where distance
measures often process observations independently, for time
series, distance measures consider sequences of observations
together [48]. This characteristic complicates the definition
of distance measures for time series and, therefore, it is desir-
able to study the factors that determine their effectiveness.
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The difficulty in formalizing accurate distance measures
stems from the inability to express precisely the notion of
similarity. As humans we easily recognize perceptually simi-
lar time series, by ignoring a variety of distortions, such as
fluctuations, misalignments, and stretching of observations.
However, it is challenging to derive definitions to reflect the
similarity for mathematically non-identical time series [50].
Due to that difficulty and the need to handle the variety of
distortions that are characteristic of the time series, dozens of
distancemeasures have been proposed in the time-series liter-
ature [8, 18, 27, 28, 30, 45, 51, 53, 100, 109, 110, 127, 137, 141].
Despite this abundance of time-series distance measures

and their implications in the effectiveness for a multitude
of time-series tasks, less attention has been given in their
comprehensive experimental validation. Specifically, in the
past two decades, only a single comprehensive experimental
evaluation has been dedicated to studying the accuracy of
9 influential time-series distance measures over 38 datasets
[45]. Unfortunately, this study suffers from three main draw-
backs: (i) this study omitted multiple distance measures, in-
cluding one of the most classic measures in the time-series
literature, namely, the cross-correlation measure [20, 112];
(ii) this study considered only a single time-series normaliza-
tion method; and (iii) this study reported raw classification
error rates without performing any rigorous statistical anal-
ysis to assess the significance of the findings. Therefore, the
analysis is incomplete, and, the findings might not be conclu-
sive. Importantly, this study is now outdated (more than a
decade old), and, naturally, it does not reflect recent progress.
Considering the previous drawbacks as well as the remark-
able interest in time-series analysis during the last decade,
we believe it is critical to revisit this subject in more detail.

However, our effort is not only motivated by the neces-
sity to address the aforementioned issues or to extend the
previous study with newer datasets and distance measures.
Instead, the thorough experimental evaluation of time-series
distance measures that we present in this paper is the byprod-
uct of our attempt to challenge four long-standing miscon-
ceptions (seeM1−M4 in Section 2) that have appeared in the
time-series literature. These misconceptions are concerned
with the (i) normalization of time series; (ii) identification of
the state-of-the-art distance measure in every category of
measures; (iii) performance of the omitted measures against
state-of-the-art measures; and (iv) detection of the most pow-
erful category of measures. Such misconceptions originated
from several influential papers [2, 18, 51, 59, 135], some of
which date back a quarter of a century, and are fueled by re-
cent inconclusive findings [46] as well as successive claims in
the literature that we discuss later. Considering how widely
cited and impactful these papers are, we believe it is risky
not to challenge such persistent misconceptions that might
disorientate newcomer researchers and practitioners.

Motivated by the aforementioned issues and our curiosity
to shed some light on these misconceptions, we conduct a
comprehensive experimental evaluation to validate the effec-
tiveness of 71 time-series distance measures. These distance
measures belong to five categories: (i) 52 lock-step measures,
which compare the ith point of one time series with the
ith point of another; (ii) 4 sliding measures, which are the
sliding versions of lock-step measures when comparing one
time series with all shifted versions of the other; (iii) 7 elastic
measures, which create a non-linear mapping between time
series by comparing one-to-many points in order to align or
stretch points; (iv) 4 kernel measures, which use a function
(with lock-step, sliding, or elastic properties) to implicitly
map data into a high-dimensional space; and (v) 4 embedding
measures, which exploit distance or kernel measures indi-
rectly for constructing new representations for time series.
In addition, we consider 8 normalization methods for time se-
ries, which serve as preprocessing steps. Table 1, summarizes
our comprehensive evaluation and compares some statistics
against the decade-old influential study [45].

We perform an extensive evaluation of these distance mea-
sures across 128 datasets [41] and compare their classification
accuracy obtained from one-nearest-neighbor classifiers (1-
NN) under both supervised and unsupervised settings. We
conduct a rigorous statistical validation of our findings by
employing two statistical tests to assess the significance of
the differences in classification accuracy when comparing
pairs of measures or multiple measures together. In summary,
our study identifies (i) normalization methods leading to sig-
nificant improvements in a number of distance measures; (ii)
new lock-step measures that significantly outperform the
current state of the art; (iii) an omitted baseline that most
highly popular elastic measures do not outperform; and (iv)
new elastic and new kernel measures that significantly out-
perform the current state of the art. These findings debunk
the four long-standing misconceptions and, therefore, alter
the landscape of what is known about existing measures.
We start with the description of the four misconceptions

in the literature (Section 2) and we review the relevant back-
ground (Section 3). Then, we present our contributions:
• We explore for the first time 8 normalization methods in
conjunction with 56 distance measures (Section 4).

• We study 52 lock-step distance measures (Section 5).
• We investigate 4 classic sliding measures omitted from
virtually every previous evaluation (Section 6).

• We validate the accuracy of 7 elastic measures under both
supervised and unsupervised settings (Section 7).

• We compare for the first time 4 kernel functions (Section
8) and 4 embedding distance measures (Section 9).

• We present an accuracy-to-runtime analysis (Section 10).
Finally, we conclude with the implications of our work and
a discussion of new directions and challenges (Section 11).



2 THE FOUR MISCONCEPTIONS
In this section, we describe four misconceptions that have
appeared in the time-series data mining literature.
These misconceptions have originated in part from sev-

eral influential papers [2, 18, 51, 59, 135]. Subsequently, these
misconceptions were fueled by a comprehensive study of
time-series distance measures [45] as well as dozens of sub-
sequent papers in the literature trusting its findings. Even
though an extension of this study appeared five years later
[144], this newer version focused on elaborating on the pre-
vious results. Recent studies that have focused on time-series
classification [11, 87] performed a statistical analysis of sev-
eral classifiers, including the distance measures in [45, 144].
Unfortunately, these studies only considered supervised tun-
ing of necessary parameters, which does not reflect the use
of distance measures for similarity search [48]. Importantly,
some results in [11] contradict other results in [87], which, in
turn, validated claims that there is no significant difference
between the evaluated elastic measures [45, 144]. Interest-
ingly, the improved accuracy found for some measures was
attributed to the evaluation framework used while otherwise
it was claimed to be undetectable [11]. Considering such ap-
parent difficulties in providing conclusive evidence for this
important subject, it is not surprising that the following
misconceptions have persisted for so long.

Before we dive into the details, we emphasize that we do
not believe or imply that any of these misconceptions were
created on purpose. On the contrary, we believe that they
are based on evidence, trends, and resources available at the
given point in time. We describe the four misconceptions in
the form of answers to questions a newcomer researcher or
practitioner would likely identify by studying the literature.
M1: How to normalize time series? The consensus is to
use the z-score or z-normalization method. Starting with the
work of Goldin and Kanellakis [59], a follow-up of the two
seminal papers for sequence [2] and subsequence [51] search
in time-series databases, that suggested first to normalize
the time series to address issues with scaling and translation,
z-normalization became the prevalent method to preprocess
time series. Despite the proposal of alternative methods the
same year [3], the z-normalization was subsequently pre-
ferred as the suggested transformations are also applicable to
the widely popular Fourier representation [2, 51, 117]. Due
to the ubiquity of z-normalization, a valuable resource for
time series, the UCR Archive [41], offered until recently the
datasets in their z-normalized form. To the best of our knowl-
edge, no study has ever extensively evaluated normalization
methods for time series. We review 8 relevant approaches in
Section 4 and study their performance in Sections 5 and 6.
M2: Which lock-step measure to use? The consensus is
to use the Euclidean distance (ED). ED was the method of

choice in the first paper for sequence search in time series [2]
due to its usefulness in many cases and its applicability over
feature vectors. Considering that ED is straightforward to
implement, parameter-free, efficient, as well as tightly con-
nected with the Fourier representation and widely supported
by indexing mechanisms (in contrast to other Lp -norm vari-
ants [160]), there is no surprise about its popularity. Besides,
evidence that with increased dataset sizes, the classification
error of ED converges to the error of more accurate measures
[135], justified its use from virtually all current time-series
indexing methods [48]. (Our results in Section 10 suggest
that classification error of ED may not always converge to
the error of more accurate measures, at least not always with
the same speed of convergence.) In Section 5, we evaluate
52 lock-step measures to determine the state of the art.
M3: Are elastic better than sliding measures? The an-
swer is currently unknown. Despite the wide popularity
of the cross-correlation measure, also known as sliding Eu-
clidean or dot product distance, in the signal and image
processing literature [23], cross-correlation has largely been
omitted from distance measure evaluations. We believe two
factors are responsible for that. First, cross-correlation was
considered in the seminal paper [2] as a typical similarity
measure, but ED was preferred instead because (i) cross-
correlation reduces to ED; and (ii) for the aforementioned
reasons inM2. Second, in the introduction of Dynamic Time
Warping (DTW) [18], an elastic measure, as an alternative
to ED a year later, no comparison was performed against
cross-correlation, an obvious baseline. Subsequently, vir-
tually all research on that subject focused either on lock-
step or elastic measures [48, 50], with a few exceptions
[83, 110, 128]. Interestingly, cross-correlation was not con-
sidered as a baseline method in any of the proposed elastic
measures [27, 28, 30, 100, 137, 141], neither in any of the
experimental evaluations of distance measures discussed
previously [11, 45, 87, 144]. Strangely, cross-correlation was
also omitted frommany popular surveys [50, 119]. Therefore,
it remains unknown if elastic measures outperform sliding
measures. We study 4 sliding measures in Section 6 and anal-
yse their performance against elastic measures in Section 7.
M4: Is DTW the best elastic measure? The general con-
sensus that has emerged is yes. Since the introduction of
DTW as a distance measure for time series [18], DTW has
inspired the exploration of edit-based distances and it is
widely used as the baseline method for this problem [11, 27,
28, 30, 87, 100, 110, 137, 141]. It is not uncommon to identify
statements even in the abstracts of papers that 1-NN with
DTW is exceptionally difficult to outperform [114–116, 152].
Such statements have been backed over the years by the
aforementioned extensive evaluations, which conclude that
(i) the accuracy of other elastic measures is very close to
that of DTW [45, 144]; (ii) there is no significant difference



in the accuracy of elastic measures [87]; and (iii) that it is
“a little embarrassing” that most classifiers do not outper-
form 1-NN with DTW [11]. Therefore, there is little space to
doubt that DTW is the best elastic measure. To study that
misconception, we validate 7 elastic measures in Section 7.

To complete the analysis and capture recent progress, we
also include kernel measures and embedding measures in our
evaluation (Sections 8 and 9). With the detailed presentation
of the four misconceptions, we believe we have now con-
vinced the reader that these misconceptions are not based on
any personal biases but, instead, have originated naturally
along with the evolution of this area. However, it is risky to
not challenge their validity, which may result in confusion
for newcomer researchers and practitioners and discourage
them from tackling problems in that area. Importantly, it
is surprising to consider that half a century of scientific
progress has not resulted in any significant improvements
over ED or the 50-year-old DTW [126].

Next, we review the relevant background required to vali-
date the accuracy of the normalization methods and distance
measures. Even though the efficiency of measures is another
important factor of their effectiveness, there are many ways
to accelerate each measure, ranging from hardware-aware
implementations to algorithmic solutions such as the use of
indexing or comparison pruning. We refer the reader to an
excellent recent study of data-series similarity search [48],
which shows the level of detail required to only evaluate ED.
Therefore, we leave such detailed study for future work but
we present an accuracy-to-runtime analysis in Section 10. e

3 PRELIMINARIES AND BACKGROUND
In this section, we review the necessary background for our
experimental evaluation of time-series distance measures.
Terminology and definitions: We consider a time-series
dataset as a set of n real-valued vectors X = [®x1, . . . , ®xn]

⊤ ∈

Rn×m , where each time series, ®xi ∈Rm , is anm-dimensional
ordered sequence of data points. From this definition, it be-
comes clear that we consider univariate time series of equal
length, where each of these points is a scalar. Following the
previous evaluations [11, 45, 144], we consider that the sam-
pling rates of all time series are the same and, therefore, we
can omit the discrete time stamps. In addition, time series
into consideration do not track errors as in the case of un-
certain time series [39, 40, 159].1
Datasets: To conduct our extensive evaluation, we use one
of the most valuable public resources in the time-series data
mining literature, the UCR Time-Series Archive [41]. This
archive contains the largest collection of class-labeled time-
series datasets. Currently, the archive consists of 128 datasets
1Most of the measures we consider can be extended with some effort for
uncertain time series ormultivariate time series where each point represents
a vector [10], but we leave such exploration for future work.

and includes time series from sensor readings, image outlines,
motion capture, spectrographs, medical signals, electric de-
vices, as well as simulated time series. Each dataset contains
from 40 to 24, 000 time series, the lengths vary from 15 to
2, 844, and each time series is annotated with a single label.
The majority of the datasets are already z-normalized and,
therefore, we apply the same normalization to all datasets.
The latest version of the archive has deliberately left a

small number of datasets containing time series with vary-
ing lengths and missing values to reflect the real world. Fol-
lowing the recommendation of the authors of the archive,
who performed similar steps to report classification accu-
racy numbers on the UCR archive website [41], we resample
shorter time series to reach the longest time series in each
dataset and we fill missing values using linear interpolation.
Through these steps, we make the new datasets compatible
with previous versions of the archive as well as with all dis-
tance measures that we consider in this study [108].
Evaluation framework: Following the previous studies
[11, 45], we also employ the 1-NN classifier in our evaluation
framework, with important differences. 1-NN classifiers are
suitable methods for distance measure evaluation for several
reasons [45]. Specifically, 1-NN classifiers: (i) resemble the
problem solved in time-series similarity search [48]; (ii) are
parameter-free and easy to implement; (iii) dependent on
the choice of distance measure; and (iv) provide an easy-to-
interpret (classification) accuracy measure, which captures if
the query and the nearest neighbor belong to the same class.
A critical step for the effectiveness of classifiers is the

splitting of a dataset into training and test sets. Previous
studies [11, 45, 144] used the k-cross-validation resampling
procedure, which produces k groups of time series, tunes
necessary parameters on the k − 1 groups, and evaluates
the distance measures using the group of time series left.
Strangely, [45, 144] tuned parameters only on a single group
and evaluated the distance measures using the k − 1 groups,
which contradicts the common practice. In [11], the improved
accuracy of some measures is attributed to such a resampling
procedure, while otherwise, it was claimed to be undetectable.
Therefore, to eliminate biases from resampling, we respect
the split of training and test sets provided by the UCR archive
as well as the class distribution in the datasets (i.e., some
datasets contain the same number of time series in each
class while other datasets contain imbalanced classes). This
decision makes our evaluation framework as close to deter-
ministic as possible and enables reproducibility.
More formally, given a matrix F = [ ®f1, . . . , ®fp ]

⊤ ∈ Rp×m

with the p time series in the training set, a matrix G =
[®д1, . . . , ®дr ]

⊤ ∈ Rr×m with the r time series in the test set,
and any choice of distance measure, d(·,·), our 1-NN classi-
fier relies on two dissimilarity matrixes to produce the final



Algorithm 1: 1-Nearest-Neighbor (1-NN) Classifier
Input :E is an r -by-p dissimilarity matrix

GL is a 1-by-r vector with the class labels of time series inG
FL is a 1-by-p vector with the class labels of time series in F

Output :acc is a scalar storing the classification accuracy
1 function acc = OneNNWITHDM(E ,GL, FL):
2 acc = 0
3 for i = 1 to r do
4 best_dist = ∞

5 for j = 1 to p do
6 dist = E(i , j)
7 if dist < best_dist then
8 class = FL(j)
9 best_dist = dist

10 if GL(i) == class then
11 acc = acc + 1

12 acc = acc
r

classification accuracy. Specifically, matrixW ∈ Rp×p con-
tains the dissimilarity values between all pairs of time series
in the training set, withWi j = d( ®fi , ®fj ) ∀ ®fi , ®fj ∈ F , whereas
matrix E ∈ Rr×p contains the dissimilarity values between
each time series in the test set with each time series in the
training set, with Ei j = d(®дi , ®fj ) ∀ ®дi ∈G, ®fj ∈F .

Algorithm 1 shows the pseudocode of our 1-NN classifier
that evaluates the test accuracy given a matrix E (as well
as vectors FL and GL containing the class labels of F and
G, respectively). By providing as input, a matrixW (as well
as two times the vector FL containing the class labels of
F ), the same algorithm computes the leave-one-out training
accuracy, which enables parameter tuning. With this setup,
we decouple the processes of distance matrix computation,
parameter tuning, and distance measure evaluation. Impor-
tantly, it facilitates easy distribution of the computation of
the dissimilarity matrixes for different parameters and avoids
the need to find the appropriate k value to perform k-cross-
validation, which is another factor that might have affected
the findings in the previous studies [11, 45].
Statistical analysis: To assess the significance of the differ-
ences in accuracy, we employ two statistical tests to validate
the pairwise comparisons of measures and the comparisons
of multiple measures together. Specifically, following the
highly influential [42], we use the Wilcoxon test [149] with
a 95% confidence level to evaluate pairs of measures over
multiple datasets, which is more appropriate than the t-test
[122]. Aswith pairwise tests we cannot reason aboutmultiple
measures together and following [42], we also use the Fried-
man test [54] followed by the post-hoc Nemenyi test [104]
to compare multiple measures over multiple datasets and
report statistical significant results with 90% confidence level
(because these tests require more evidence than Wilcoxon).
Availability of code and results: We implemented the
evaluation framework in Matlab, with imported C and Java

codes for several distance measures. To ensure the repro-
ducibility of our findings, we make the code available and
we provide the results in a website to ease exploration.2
Environment: We ran our experiments on 15 identical
servers: Dual Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
and 196GB RAM. Each server has 24 physical cores (12 per
CPU), which provided us with 360 cores for four months.

Next, we start with the study of normalization methods.

4 TIME-SERIES NORMALIZATIONS
In this section, we review 8 normalization methods usually
performed as a preprocessing step before any comparison.
As we discussed earlier, a critical issue when comparing

time series is how to handle a number of distortions that
are characteristic of the time series. For complex distortions,
sophisticated distance measures are required as offering in-
variances to such distortions is not trivial, which explains the
proliferation of distance measures in the literature. However,
in several cases, a simple preprocessing step is generally
sufficient to eliminate particular distortions, as we see next.

Consider the following two examples [59]: (i) two products
with similar sales patterns but different sales volume; and
(ii) temperatures of two days starting at different values but
exhibiting the exact same pattern. The first is an example of
the difference in scale between two time series, whereas the
second is an example of the difference in translation. Despite
such differences, in many cases, it is useful to recognize the
similarity between time series. Formally, for any constants
a (scale) and b (translation), linear transformations in time
series of the form a®x + b should not affect their similarity.

Several methods have been proposed to handle these pop-
ular distortions. Normalization methods transform the data
to become normally distributed, whereas standardization
methods place different data ranges on a common scale. In
the machine-learning literature, feature scaling is also used
to refer to such methods. In practice, all terms are used in-
terchangeably to refer to some data transformation.
Z -score normalization: The most popular normalization
method in the time-series literature is by far the z-score (see
Section 2). Z -score transforms data such that the resulting
distribution has zero-mean and unit-variance:

®x ′ =
®x − averaдe(®x)

std(®x)
(1)

where averaдe(·) is the mean of ®x and std(·) is its standard
deviation. Z -score is also widely used in many machine-
learning algorithms, which might explain its popularity [62].
Min-max normalization (MinMax): An alternative ap-
proach is to scale time-series values in the [0,1] range:

®x ′ =
®x −min(®x)

max(®x) −min(®x)
(2)

2http://benchmarks.timeseries.org

http://benchmarks.timeseries.org
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Figure 1: Example of how each of the 8 normalization methods transforms two time series of the ECGFiveDays dataset [41].

However, many distance measures cannot deal with zero val-
ues and, therefore, scaling time series between an arbitrary
set of values [a,b] is often preferred:

®x ′ = a +
®x −min(®x) · (b − a)

max(®x) −min(®x)
(3)

The selection of the range is data-dependent and might re-
quire tuning to maximize its effectiveness.
Mean normalization (MeanNorm): Another option to
normalize time series is to combine the previous methods:

®x ′ =
®x − averaдe(®x)

max(®x) −min(®x)
(4)

such that numerator is based on z-score and the denominator
is based on MinMax normalization.
Median normalization (MedianNorm): Another method
is to divide the data points by the median (or mean):

®x ′ =
®x

median(®x)
(5)

which is less popular due to numerical issues that may arise.
Unit length normalization (UnitLength): A common
way to normalize time series is to scale the data points such
that the whole time series has length one:

®x ′ =
®x

| | ®x | |
(6)

where | | · | | denotes the Euclidean norm.
Adaptive scaling (AdaptiveScaling)) [32, 154]: In con-
trast to all previous normalization methods, this approach
computes the scaling factor between pairs of time series:

a =
®xi · ®x j

T

®xi · ®x j
T (7)

which is used in each pairwise comparison (e.g., ED( ®xi ,a · ®x j ).
Recently, several activation functions for neural networks

gained popularity [81]. We explore two such functions.
Logistic or sigmoid normalization (Logistic)): The lo-
gistic function uses the formula below to activate time series:

®x ′ =
1

1 + e−®x
(8)

Hyperbolic tangent normalization (Tanh)): Thismethod
uses the formula below to activate time-series values:

®x ′ =
e2®x − 1
e2®x + 1

(9)

Figure 1, shows an example of how each one of the previ-
ously described normalization methods transforms a pair of
time series from the ECGFiveDays dataset [41]. We observe
that in some cases, the differences are only visible in the
range of values (e.g., z-score vs. UnitLength), but, in others,
the visual effect is more distinct (e.g., MinMax, MeanNorm,
and AdaptiveScaling). The most unexpected visual effects
come from the two non-linear transformations (i.e., Logistic
and Tanh). We evaluate the accuracy of these 8 methods
along with the 52 lock-step measures in the next section.

5 TIME-SERIES LOCK-STEP DISTANCES
In this section, we study 52 lock-step measures that have
been proposed across different scientific disciplines.

Distance measures provide a numerical value to quantify
how distant are pairs of objects represented as points, vec-
tors, or matrixes. Due to the difficulty in formalizing the
notion of similarity, as well as the need to handle a variety of
distortions and applications, hundreds of distance measures
have been proposed in the literature. This proliferation of dis-
tance measures across different scientific areas has resulted
in multi-year efforts to organize this knowledge into dictio-
naries [43] and encyclopedias [44] of distance measures.
As it is understandable, not all of these measures are ap-

plicable to time-series data. Thankfully, different endeavors
have already been conducted to identify appropriate mea-
sures for a variety of tasks across different fields [55, 162]. An
influential study [26] identified 50 lock-step distance mea-
sures that we adapt in our evaluation of time-series distance
measures. We note that a previous study [57] evaluated a sub-
set of these measures (45) using 1-NN over 42 datasets from
the UCR archive and concluded that there is no significant
differences between these lock-step distance measures.



Unfortunately, we identified issues with this study. First,
several of the evaluated measures are known to be equivalent
to each other and, therefore, they should provide identical
classification accuracy results. For example, this is the case
for the Euclidean distance and the inner product (or Pear-
son’s correlation), which under z-normalization, they should
provide the same accuracy numbers. Second, several distance
measures were not properly implemented, resulting in using
as distance values either the real part of complex numbers
or the first value of a normalized vector of the input time
series. Therefore, the analysis of these lock-step measures is
incomplete, and the findings of the study are inconclusive.
In our study, we have carefully re-implemented all 50

distance measures from [26]. The distance measures belong
to 7 different families of measures: (1) 4 measures belong to
the Lp Minkowski family; (2) 6 measures belong to the L1
family; (3) 7 measures belong to the Intersection family; (4) 6
measures belong to the Inner Product family; (5) 5 measures
belong to the Fidelity family; (6) 8 measures belong to the L2
family; and (7) 6measures belong to the Entropy family. Apart
from these 42measures, we also consider the 3measures that
utilize ideas from multiple other measures (Combinations) as
well as 5 measures proposed in the survey but not reported
in the literature (until that point), overall 50 measures.
Besides these measures, we also include two measures

that have substantial differences from the previous lock-step
measures. Specifically, DISSIM [53] defines the distance as a
definite integral of the function of time of the ED in order
to take into consideration different sampling rates of time
series. This computationally expensive operation can be ap-
proximated by a modified version of ED that considers in the
distance of the ith points the i+1th points, which is a form of
a smoothing operation. Finally, the adaptive scaling distance
(ASD), embeds internally the AdaptiveScaling normaliza-
tion described previously with an inner product measure
to compare time series under optimal scaling [32, 154]. We
exclude from our analysis and leave for future study three
recently proposed correlation-aware measures [98] that are
more complex in nature than those we consider here.
Evaluation of lock-step measures: In lieu of including
several pages with formulas and tables with raw classifica-
tion accuracy numbers, we created a website to ease the
exploration of our results, as noted earlier. For all mathe-
matical formulas, we refer the reader to the previous survey
[26]. Below, we only report the summary of raw results and
findings from our rigorous statistical analysis. Specifically,
we evaluate 52 distance measures and their combinations
with 8 normalization methods using our 1-NN classifier over
128 datasets (see Section 3). Table 4 contains all distance mea-
sures requiring parameter tuning along with the evaluated
parameters. From the lock-step measures, only one measure,
the Minkowski distance, requires tuning.

Distance
Measure

Scaling
Method Better Average

Accuracy > = <

Minkowski
(Lp -norm)

z-score ✔ 0.7083 79 13 36
MinMax ✔ 0.7041 70 12 46

UnitLength ✔ 0.7083 79 13 36
MeanNorm ✔ 0.7082 81 10 37

Tanh ✘ 0.6941 60 7 61

Lorentzian

z-score ✔ 0.7022 71 8 49
MinMax ✔ 0.7010 66 7 55

UnitLength ✔ 0.7024 76 9 43
MeanNorm ✔ 0.7061 75 9 44

Tanh ✘ 0.6950 63 9 56

Manhattan
(L1-norm)

z-score ✔ 0.7017 76 11 41
MinMax ✔ 0.7017 66 11 51

UnitLength ✔ 0.7017 76 11 41
MeanNorm ✔ 0.7051 76 9 43

Tanh ✘ 0.6913 63 11 54

Avg L1/L∞

z-score ✔ 0.7012 75 10 43
MinMax ✔ 0.7013 68 5 55

UnitLength ✔ 0.7012 75 10 43
MeanNorm ✔ 0.7046 76 9 43

Tanh ✘ 0.6911 60 13 55

DISSIM

z-score ✔ 0.7013 78 6 44
MinMax ✔ 0.7016 66 8 54

UnitLength ✔ 0.7013 78 6 44
MeanNorm ✔ 0.7039 73 9 46

Tanh ✘ 0.6917 64 10 54

Jaccard MinMax ✘ 0.6955 66 12 50
MeanNorm ✔ 0.6939 76 19 33

ED
(L2-norm)

MinMax ✘ 0.6947 69 13 46
MeanNorm ✘ 0.6896 67 11 50

Emanon4 MinMax ✔ 0.7034 72 6 50
Soergel MinMax ✔ 0.7011 73 4 51
Clark MinMax ✘ 0.6986 73 4 51
Topsoe MinMax ✘ 0.6962 71 4 53
Chord MinMax ✘ 0.6934 64 8 56
ASD MinMax ✘ 0.6884 56 13 59

Canberra MinMax ✘ 0.6933 56 4 68
ED z-score - 0.6863 - - -

Table 2: Comparison of lock-step distance measures. “Scal-
ing Method” column indicates the underlying time-series
normalization. “Better” column denotes that the distance
measure outperforms the baseline with statistical signifi-
cance. “AverageAccuracy” column shows themean accuracy
achieved across 128 datasets. The last three columns indicate
the number of datasets over which a distancemeasure is bet-
ter (“>”), equal (“=”), or worse (“<”) than the baseline.

Table 2 reports the performance of lock-step measures
against the baseline listed in the last row. Following the con-
vention [52], we also report the average accuracy across
datasets but we note that this number is meaningless when
not accompanied by rigorous statistical analysis. Specifically,
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Figure 2: Ranking of lock-stepmeasures under z-score based
on the average of their ranks across datasets.
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Figure 3: Ranking of normalizationmethods in combination
with the Lorentzian distance based on the average of their
ranks across datasets. ED uses z-score normalization.

from all combinations of distance measures and normaliza-
tion methods (52 · 8 = 416 in total), we only report those re-
sulting in an average accuracy higher than the one achieved
by ED with z-score, the current state-of-the-art lock-step
measure. We omit measures achieving the same or worse
average accuracy than ED. We observe 14 measures with
some improvement in their average accuracy in contrast to
ED and overall 36 combinations with different normalization
methods. However, only about half of these combinations
result in statistically significant differences according to the
Wilcoxon test. (We perform all pairwise comparisons with
Wilcoxon to ensure we did not miss any accurate measure.)

In particular, Minkowski distance performs better in terms
of average accuracy than all other distance measures, but it
is also the only measure that requires tuning, which is not
always desirable. Interestingly, several measures of the L1
family, namely, the Lorentzian (i.e., the natural logarithm of
L1), the Manhattan, and the Avg L1/L∞, outperform ED with
statistically significant differences. DISSIM, a measure that
integrates some form of smoothing of time series, also outper-
forms ED significantly. In all of these measures, we observe a
similar trend: all combinations with z-score, UnitLength, and
MeanNorm normalizations lead to significant improvements.
However, our extensive experimentation reveals three un-
knownmeasures in the time-series literature that achieve sta-
tistically significant improvement over ED, namely, the Jac-
card distance with MeanNorm, the Emanon4 distance with
MinMax, and the Soergel distance with MinMax. Interest-
ingly, all three distance measures do not show improvements
under z-score, which shows the importance of considering
different normalizations. Among all methods, MeanNorm
seems to perform the best. However, the Wilcoxon test sug-
gests no statistically significant differences between any of
the 17 combinations that outperform ED with z-score.
To better understand the performance of lock-step mea-

sures, we also evaluate the significance of their differences
in accuracy when considering several distance measures
together, using the Friedman test followed by a post-hoc

Nemenyi test. Specifically, we perform two analyses: (i) we
evaluate different distance measures under the same normal-
ization; and (ii) we evaluate standalone distance measures
under different normalizations; Figure 2 shows the average
rank across all datasets of the distance measures, which un-
der z-score normalization, outperformed previously ED. The
thick line connects measures that do not perform statistically
significantly better. We observe that Lorentzian is ranked
first (once we ignore the supervised Minkowski), meaning
that it performed best in the majority of the datasets. All 5
measures significantly outperform ED, but we observe no
difference between them. Figure 3 evaluates a standalone
distance measure, the Lorentzian measure that performed
the best previously, with different normalization methods
against ED with z-score. We observe that the 3 out of the 4
combinations that were better than ED under the Wilcoxon
test remain better under this statistical analysis, and there is
no difference between them. We omit similar figures for the
other measures as we observe the similar trends.
Debunking M1 and M2: Our evaluation shows clear ev-
idence that normalization methods other than z-score can
lead to significant improvements, which debunks M1. Even
though for standalone measures, we did not observe signif-
icant improvements (e.g., ED with MeanNorm vs. ED with
z-score), that does not reject our hypothesis. We note that
the majority of the UCR datasets are in their z-normalized
form and, therefore, for fairness, we z-normalized all datasets,
which may have limited this analysis. Despite that, we iden-
tified two new distance measures, unknown until now, that
only under MinMax andMeanNormmethods outperform ED
with z-score and, importantly, z-score is not suitable for them.
Normalizations such as MeanNorm, which combines z-score
and MinMax methods, seems to perform the best for several
measures. Similarly, our analysis shows that distance mea-
sures other than ED can lead to significant improvements,
which debunksM2. We identified 7 distance measures that
significantly outperform ED. We emphasize that no previous
study considered different normalization methods in order
to challengeM1, and our findings contradict both previous
studies [45, 57], which concluded that there is no significant
difference in the accuracy of lock-step measures.

Next, we focus on sliding versions of lock-step measures.

6 TIME-SERIES SLIDING DISTANCES
We study 4 variants of cross-correlation, a measure that has
largely been omitted from distance measure evaluations.
Starting with the concurrent introduction of lock-step

and elastic measures for the problem of time-series similar-
ity search [2, 18, 51], the vast majority of research focused
on these two categories of measures (see M3 in Section
2). Cross-correlation, which is similar to convolution, dates
back in the 1700s [47] but received practical popularity only



Distance
Measure

Scaling
Method Better Average

Accuracy > = <

NCCc
(SBD)

z-score ✔ 0.7309 86 9 33
MinMax ✔ 0.7186 72 8 48

UnitLength ✔ 0.7309 86 9 33
MeanNorm ✔ 0.7309 86 9 33
MedianNorm ✘ 0.7050 63 7 58
Adaptive ✘ 0.7072 72 8 48
Tanh ✘ 0.7077 58 8 62

NCCb
z-score ✔ 0.7309 86 9 33

UnitLength ✔ 0.7309 86 9 33

NCC z-score ✔ 0.7309 86 9 33
UnitLength ✔ 0.7309 86 9 33

Lorentzian UnitLength - 0.7024 - - -
Table 3: Comparison of sliding distance measures. “Scal-
ing Method” column indicates the underlying time-series
normalization. “Better” column denotes that the distance
measure outperforms the baseline with statistical signifi-
cance. “AverageAccuracy” column shows themean accuracy
achieved across 128 datasets. The last three columns indicate
the number of datasets over which a distancemeasure is bet-
ter (“>”), equal (“=”), or worse (“<”) than the baseline.

after the invention of Fast Fourier Transform (FFT) [34],
which dramatically reduced its computational cost. Cross-
correlation is one of the most fundamental operations in
signal processing [23] and, lately, in deep neural networks
[79, 80]. Recently, research focusing on time-series clustering
used cross-correlation and achieved state-of-the-art perfor-
mance for this task [110, 111]. However, this work assumed
z-normalized time series and performed evaluations only
against ED and DTW. Next, we present cross-correlation fol-
lowing the notation used in [110] in an attempt to establish
consistent terminology with the recent literature.

In simple terms, the cross-correlation measure maximizes
the correlation (or, equivalently, minimizes the ED [103]) be-
tween a time-series ®x and all shifted versions of another time
series ®y. By shifting (or sliding), we refer to an operation,
®x(s), that rearranges the data points by moving all points by
|s | positions to the right, for s ≥ 0, or left, for s < 0. For ex-
ample, ®x(1) moves all data points by one position to the right
and brings the final entry to the first position (or differently
pads the empty positions with zeros; both approaches lead to
similar measures). When we consider all shifts, s ∈ [−m,m],
wherem is the length of both time series (the measure can
also operate with unequal lengths), we produce the cross-
correlation sequence,CCw (®x, ®y), withw ∈ {1, 2, . . . , 2m− 1},
of length (2m − 1), containing the inner product of the two
time series in every possible shift.

Unfortunately, the computation of CCw (®x, ®y) is expensive,
O(m2), but, thankfully, with the use of FFT (F (·)) and its

inverse version (F −1(·)), the cost reduces to O(m · log(m)):

CCw (®x, ®y) = F −1{F (®x) ∗ F (®y)} (10)

Having introduced the necessary notation and considering
popular normalizations, we can derive the following 4 vari-
ants of cross-correlation similarity measures [110]:

NCCq(®x, ®y) =



max
(
CCw ( ®x , ®y)

m

)
, q = “b” (NCCb )

max
(
CCw ( ®x , ®y)
m−|w−m |

)
, q = “u” (NCCu )

max
(
CCw ( ®x , ®y)
| | ®x | | · | | ®y | |

)
, q = “c” (NCCc )

max(CCw (®x, ®y)), q = “ · ” (NCC)

(11)

known as the normalized cross-correlation (because it as-
sumes some underlying time-series normalization), NCC ,
the biased estimator, NCCb , the unbiased estimator, NCCu ,
and the coefficient normalization or SBD [110], NCCc .
Evaluation of sliding measures: Due to the resemblance
of cross-correlation to the sliding version of Pearson’s cor-
relation, when time series are z-normalized, the majority of
the literature assumes this underlying data normalization
[110]. To the best of our knowledge, the performance of
cross-correlation as a measure to compare time series under
different normalization methods is not well explored. Ta-
ble 3 reports the performance of the combinations of cross-
correlation variants with normalization methods. Specifi-
cally, from 32 such combinations (i.e., 4 measures × 8 nor-
malizations), we report only those resulted in an average
accuracy higher than the one achieved by Lorentzian (with
z-score followed by UnitLength, the last row of the Table 3),
the new state-of-the-art lock-step distance measure based
on our previous analysis (Section 5). As before, we perform
all pairwise comparisons using the Wilcoxon statistical test
to ensure we did not miss any accurate combination.

We observe that from all 4 cross-correlation measures, the
unbiased estimator, NCCu , performs worse than all other
variants. Specifically, no combination of NCCu with any of
the normalization methods outperforms the Lorentzian dis-
tance. In contrast, the remaining 3 variants, NCC , NCCb ,
and NCCc , all include combinations that outperform the
baseline. In particular, combinations of NCC and NCCb with
z-score and UnitLength normalizations significantly outper-
form the baseline. We observe negligible differences between
these combinations (i.e., only one dataset is slightly affected).
Interestingly, the coefficient normalization variant, NCCc ,
outperforms the baseline with 6 combinations of normal-
ization methods. However, only half of these combinations
outperform the Lorentzian distance with a statistically signif-
icant difference. In all of these measures, we observe a similar
trend: all combinations with z-score and UnitLength normal-
ization methods lead to significant improvements. However,
for NCCc , another normalization, namely, MeanNorm, also
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Figure 4: Ranking of different normalization methods for
NCCc based on the average of their ranks across datasets, us-
ing Lorentzian with UnitLength as the baseline method.

achieves similar improvement, which is not the case when
combined with NCC and NCCb . Even though NCC , NCCb ,
and NCCc perform similarly in terms of average accuracy,
NCCc appears to be the most robust cross-correlation mea-
sure as it leads to improvement over the baseline with more
normalization methods than the other variants and for three
such combinations the improvement is statistically signifi-
cant. Among all combinations that outperform the baseline,
Wilcoxon suggests no statistically significant differences.

In addition to these pairwise comparisons, we also evalu-
ate the significance of the differences when considered all
together. Figure 4 shows the average rank across datasets of
five combinations of NCCc with normalization methods (we
excluded Tanh normalization as from Table 3 we observe
that, despite the increase in average accuracy, the Lorentzian
distance still outperforms this combination in more datasets).
Similarly to the pairwise analysis, we observe that combi-
nations with z-score, MeanNorm, and UnitLength normal-
izations lead to significant improvements according to the
Friedman test followed by a post-hoc Nemenyi test to assess
the significance of the differences in the ranking. Combi-
nations of NCCc with AdaptiveScaling or MinMax do not
achieve significant improvement. We observe that both sta-
tistical evaluation approaches lead to similar conclusions.
We omit figures for NCC and NCCb with similar findings.

For completeness, we report another analysis using ED as
the baseline instead of the Lorentzian distance (we omit the
figure due to space limitation). NCCc in combination with
z-score, UnitLength, and MeanNorm normalization methods
outperform ED but, in contrast to Figure 4, now combinations
with AdaptiveScaling and MinMax are also significantly bet-
ter than ED. This analysis confirms our results in Section
5 that the Lorentzian distance (and other L1 variants) are
more powerful than ED. In addition, our analysis indicates
that NCCc outperforms all lock-step measures with all dif-
ferent normalizations, making it a strong baseline method
for time-series comparison.
We now turn our focus to elastic measures and, particu-

larly, to their performance against sliding measures.

7 TIME-SERIES ELASTIC MEASURES
In this section, we study 7 elastic measures, a popular cate-
gory of measures for time-series comparison.

Distance
Measure Parameters

MSM c ∈ {0.01, 0.1, 1, 10, 100, 0.05, 0.5, 5, 50, 500}

DTW δ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 100}

EDR ϵ ∈ {0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05,
0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

LCSS
δ ∈ {5, 10}
ϵ ∈ {0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05,
0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

TWE λ ∈ {0, 0.25, 0.5, 0.75, 1.0}
ν ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}

Swale ϵ ∈ {0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1},p ∈ {5}, r ∈ {1}

Minkowski p ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.3, 1.5, 1.7, 1.9,
2, 3, 5, 7, 9, 11, 13, 15, 17, 20}

KDTW γ ∈ {2−15, 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8,
2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20}

GAK γ ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

SINK γ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20}

RBF γ ∈ {2−15, 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, 2−7,
2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20}

GRAIL γ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20}

RWS
γ ∈ {10−3, 3 · 10−3, 10−2, 3 · 10−2, 0.1, 0.14, 0.19,
0.28, 0.39, 0.56, 0.79, 1.12, 1.58, 2.23, 3.16, 4.46, 6.30,
8.91, 10, 31.62, 102, 3 · 102, 103}, Dmax = 25

SIDL λ ∈ {0.1, 1, 10}, r ∈ {0.1, 0.25, 0.5}
Table 4: Parameter choices for distance measures..

As discussed earlier, sliding measures find a global align-
ment by sliding one time series against the other. In contrast,
elastic measures create a non-linear mapping between time-
series data points to support flexible alignment of different
regions. Through this mapping, elastic measures permit time
series to “stretch” or “shrink” their observations to improve
time-series matching. Most elastic measures rely on dynamic
programming to find this mapping efficiently by defining
recursive formulas over am-by-m matrixM that contains in
each cell the ED (or some other lock-step measure) between
every point of one time series against every point of another
time series. In general, the goal of different elastic measures
in the literature is to employ different strategies to find a
warping path,W = {w1, . . . ,wk }, with k ≥ m, a contiguous
set of matrix cells that shows the mapping of every point
of one time series to one, more, or none of the points of the
other time series. To improve the efficiency and the accuracy
of elastic measures, it is a common practice to introduce
constraints (in the form of parameters) to guide the warping
path to visit only a subset of cells inM or to determine above
which distance threshold two points should match.



Distance
Measure

Parameter
Tuning Better Average

Accuracy > = <

MSM LOOCCV ✔ 0.7628 86 3 39
c = 0.5 ✔ 0.7627 89 2 37

TWE LOOCCV ✔ 0.7632 85 4 39
λ=1,ν =0.0001 ✔ 0.7622 89 4 35

DTW
LOOC ✔ 0.7519 75 16 37
δ = 100 ✘ 0.7248 54 10 64
δ = 10 ✘ 0.7372 64 6 58

EDR LOOCCV ✔ 0.7485 74 8 46
ϵ = 0.1 ✘ 0.7202 62 5 61

Swale LOOCCV ✔ 0.7499 72 8 48
ϵ = 0.2 ✘ 0.7229 63 4 61

ERP - ✔ 0.7488 77 5 46

LCSS LOOCCV ✘ 0.7398 66 6 56
δ = 5, ϵ = 0.2 ✘ 0.7160 63 2 63

NCCc - - 0.7309 - - -
Table 5: Comparison of elastic measures against NCCc . “Pa-
rameter Tuning” indicates supervised or unsupervised tun-
ing. “Better” denotes that themeasure outperforms the base-
line with statistical significance. “Average Accuracy” shows
the mean accuracy achieved across 128 datasets. The last
three columns indicate the datasets over which a measure
is better (“>”), equal (“=”), or worse (“<”) than the baseline.

The first elastic measure, DTW [126, 127], was proposed as
a speech recognition tool and, later, it was introduced in the
time-series literature as a suitable approach for time-series
comparison [18]. DTW finds the warping path that mini-
mizes the distances between all data points. In the original
form, DTW is parameter-free, however, many approaches
have been proposed to define bands (i.e., the shape of the
subset cells of matrixM that the warping path is permitted to
visit) and the width or window (i.e., size) of the bands. We use
the Sakoe-Chiba band [127], which is the most frequently
used in practice [45], and we tune the window δ using pa-
rameters shown in Table 4. For example, a value δ = 10
indicates a window size 10% of the time-series length.

The Longest Common Subsequence (LCSS) distance is an-
other type of elastic measure that was derived from the idea
of edit-distances for characters. Specifically, LCSS introduces
a parameter ϵ that serves as a threshold to determine when
two points of time series should match [7, 141]. Similarly
to DTW, LCSS also constrains the warping window by in-
troducing an additional parameter δ [141]. Edit Distance on
Real sequence (EDR) distance [28] is another edit-distance-
based measure that similarly to LCSS, uses a parameter ϵ to
quantify the distance of points as 0 or 1. EDR also introduces
penalties for gaps between matched subsequences. Edit Dis-
tance with Real Penalty (ERP) distance [27] is a measure that
bridges DTW and EDR distance measures by more carefully
computing the distance between gaps of time series.

Differently than the previous approaches, the Sequence
Weighted Alignment model (Swale) [100] proposes a model
to compute the similarity of time series using rewards for
matching points and penalties for gaps. Apart from a thresh-
old ϵ parameter, Swale also requires parameters for the re-
ward r and the penalty p. The Move–split–merge (MSM) dis-
tance [137] is another elastic measure based on edit-distance
but in contrast to DTW, LCSS, and EDR, MSM is a metric.
MSM uses a set of operations to replace, insert, or delete val-
ues in time series to improve their matching. Finally, Time
Warp Edit (TWE) distance [92] is a measure that combines
merits from LCSS and DTW. TWE introduces a stiffness pa-
rameter ν to control the warping but at the same point it
also penalizes matched points (parameter λ).

For each one of these 7 elastic measures, several variants
and extensions have been proposed in the literature. For ex-
ample, Derivative DTW (DDTW) [60] combines raw time
series with their first-order differences (derivatives). Com-
plexity Invariant distance (CID) [16] is a weighting scheme
to compensate for differences in the complexity of two time
series. Finally, Weighted DTW (WDTW) [68] adds a penalty
to the warping path of DTW. All of these approaches describe
extensions that can potentially be used in combination with
all previously described elastic measures. Importantly, each
of these extensions often introduces additional parameters
that require tuning. To avoid an explosion of evaluated ap-
proaches, we do not include such variants in our analysis.
An excellent recent study [11] focusing on time-series classi-
fication has evaluated several of these approaches (and did
not identify significant improvements from their use).
Evaluation of elastic vs. sliding measures: With the in-
troduction of the 7 elastic measures we are now in posi-
tion to evaluate their performance against sliding measures,
an experiment that has been omitted in all previous stud-
ies [11, 45]. Table 5 compares the classification accuracy of
elastic measures against the accuracy of NCCc , the state-of-
the-art sliding measure based on our previous experiment
in Section 6. As we did not observe significant differences
from using different normalization methods for NCCc , for all
subsequent experiments we always use z-normalized time
series. We also do that so that our results are closely compa-
rable to those reported previously [45, 144]. Table 5 includes
two experimental settings, one supervised and one unsuper-
vised. In the supervised setting, the necessary parameters
of the elastic measures are tuned on the training set using
cross-validation with a leave-one-out-classifier (LOOCCV),
as noted in Section 3. In the unsupervised setting, we con-
sult the parameters selected through LOOCCV to identify
a set of parameters that perform well on average across all
datasets. This step involves several trial-and-error attempts
and a post-hoc analysis of the results (i.e., we observe the
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Figure 5: Ranking of elastic and sliding distance measures
based on the average of their ranks across datasets, using
supervised tuning for their parameters.
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Figure 6: Ranking of elastic and sliding distance measures
based on the average of their ranks across datasets, using
unsupervised tuning for their parameters.

accuracy on the test sets). Even though this is an unfair ad-
vantage against parameter-free approaches, such as NCCc ,
we perform this post-hoc analysis to ensure that elastic mea-
sures are not misrepresented in such unsupervised scenario
and that a domain expert could potentially identify such
parameters without supervised tuning. For some measures,
such as DTW, that was an easy step, however, for others, we
had to perform multiple attempts to identify parameters that
achieve a competitive accuracy on average.
From Table 5, we observe that when parameters are se-

lected under supervised settings (lines with LOOCCV tuning)
all elastic measures significantly outperform NCCc with one
exception, the LCSS measure, which marginally outperforms
NCCc but the difference is not statistically significant ac-
cording to Wilcoxon. However, the picture is different for
the unsupervised scenario. Specifically, we observe that 4
out of the 7 elastic measures do not outperform NCCc . In-
terestingly, LCSS, EDR, and DTW (with δ = 100, which
resembles an equivalent parameter-free measure to NCCc )
are slightly worse. MSM, TWE, and ERP on the other side sig-
nificantly outperform NCCc in the unsupervised setting as
well. Among all elastic measures, ERP is the only parameter-
free measure that achieves significantly better accuracy than
NCCc in both supervised and unsupervised settings.

To better understand the performance of elastic measures
against NCCc , in addition to all previous pairwise statistical
comparisons, we also evaluate the significance of the dif-
ferences when considered all together. Specifically, Figure 5
shows the average ranks of the elastic measures in the su-
pervised setting and Figure 6 shows the average ranks in the
unsupervised setting. The ranking of measures in Figure 5
contradicts some of the pairwise results observed in Table 5.

Specifically, we observe that even under supervised settings,
4 out of the 7 elastic measures, namely, LCSS, ERP, EDR, and
Swale, do not achieve significantly better performance than
NCCc . The results for MSM, TWE, and DTW, are consistent
in both statistical evaluations. For the unsupervised setting,
both statistical evaluation approaches agree to an extent. In
particular, Figure 6 shows clearly that MSM and TWE out-
perform NCCc . However, the remaining 5 elastic measures
perform similarity to NCCc . Interestingly, as we observed in
Table 5, NCCc slightly outperforms 3 elastic measures.

To validate our findings, we repeat the analysis (we omit
figures due to space limitation) and evaluate the significance
of the differences when we consider all elastic measures to-
gether (i.e., excluding NCCc ). Specifically, we observe that
Swale, ERP, EDR, and LCSS do not outperform DTW-10 with
statistically significant difference. Interestingly, the super-
vised LCSS is slightly worse than the unsupervised DTW-10.
ERP, which under pairwise evaluation appears to signifi-
cantly outperform DTW-10, when all measures are consid-
ered together, both appear to achieve comparable perfor-
mance. MSM, TWE, and DTW also perform similarly and
all three supervised measures outperform DTW-10. How-
ever, under unsupervised settings, we observe that MSM
and TWE significantly outperform all other elastic measures.
DebunkingM3 and M4: Our comprehensive evaluation
shows clear evidence that sliding measures are strong base-
lines that most elastic measures do notmanage to outperform
either in supervised or unsupervised settings, which debunks
M3. Specifically, from all 5 elastic measures evaluated in the
decade-old study [45], namely, LCSS, Swale, EDR, ERP, and
DTW, only DTW significantly outperforms cross-correlation
under the supervised scenario. In the unsupervised setting,
none of the 5 measures outperforms cross-correlation and,
interestingly, several of them perform slightly worse. This
is a remarkable finding, showing that the simplest type of
alignment between time series is very effective and it should
have served as a baseline method for elastic measures. Only
MSM and TWE, two measures that appeared after [45] show
promising results and outperform cross-correlation with sta-
tistically significant differences in both supervised and unsu-
pervised settings. Importantly, MSM is the only method that
significantly outperforms DTW under supervised settings
(according to Wilcoxon) and, under unsupervised settings,
both MSM and TWE significantly outperform DTW (with
both statistical tests validating this result). Therefore, there
is clear evidence that the widely popular DTW is no longer
the best elastic distance measure, which debunksM4.

8 TIME-SERIES KERNEL MEASURES
Until now, our analysis focused on three categories of dis-
tance measures, namely, lock-step, sliding, and elastic mea-
sures, with the goal to provide answers to the four-long



Distance
Measure

Parameter
Tuning Better Average

Accuracy > = <

KDTW LOOCCV ✔ 0.7668 89 7 32
γ = 0.125 ✔ 0.7501 85 7 36

GAK LOOCCV ✔ 0.7474 79 9 40
γ =0.1 ✔ 0.7387 72 10 46

SINK LOOCCV ✔ 0.7469 69 13 46
γ = 5 ✘ 0.7396 58 11 59

RBF LOOCCV ✪ 0.6869 20 29 79
γ = 2 ✪ 0.6613 13 29 86

NCCc - - 0.7309 - - -
Table 6: Comparison of kernel measures. “Better” denotes
that the distancemeasure outperforms the baselinewith sta-
tistical significance. “Average Accuracy” shows the mean ac-
curacy achieved across 128 datasets. The last three columns
indicate the datasets over which a measure is better (“>”),
equal (“=”), or worse (“<”) than the baseline.

standing misconceptions that we discussed in Section 2. Re-
cently, kernel functions [130, 131], a different category of
similarity measures, have started to receive attention due to
their competitive performance [1]. In contrast to all previ-
ously described measures, kernel functions must satisfy the
positive semi-definiteness property (p.s.d) [132]. The precise
definition is out of the scope of this work (we refer the reader
to recent papers for a detailed review [1, 109]) but in simple
terms, a function is p.s.d. if the similarity matrix, which con-
tains all pairwise similarity values, has positive eigenvalues.
This important property results in convex solutions for sev-
eral learning tasks involving kernels [35]. In this section, we
study 4 representative kernel functions and evaluate their
performance against sliding and elastic measures.

Specifically, the first kernel we consider is the Radial Basis
Function (RBF) [37], a general purpose kernel function that
internally exploits ED but maps data into a high-dimensional
space where their separation is easier. To capture similarities
between the shifted versions of time series, [142] proposed
a sliding kernel to consider all possible alignments between
time-series. We include a recently proposed variant of this
kernel, namely, SINK, that has achieved competitive results
to NCCc and DTW [109]. Finally, we include two elastic
kernel functions, the Global Alignment Kernel (GAK) [38]
and Dynamic Time Warping Kernel (KDTW) [93].
Evaluation of kernel functions: Having introduced the 4
kernel functions, we are now in position to evaluate their per-
formance against sliding and elastic measures. Table 6 com-
pares the classification accuracy of kernel functions against
the accuracy of NCCc . Table 4 lists the parameters consid-
ered in each function. As before, we consider both super-
vised and unsupervised settings. In the supervised setting,
we observe that all kernel functions significantly outperform
NCCc with the exception of RBF, which is significantly worse
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Figure 7: Ranking of kernel measures based on the average
of their ranks across datasets, using supervised tuning.
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Figure 8: Ranking of kernel measures based on the average
of their ranks across datasets, using unsupervised tuning.

(marked with ✪). In the unsupervised settings, KDTW and
GAK significantly outperform NCCc , as before, but SINK
achieves comparable performance without outperforming
NCCc . To better understand the performance of KDTW and
GAK, which appear to be the strongest kernel functions, we
also evaluate the significance of the differences when consid-
ered together with all elastic and sliding measures. Figure 7
presents the results for supervised settings and Figure 8 for
unsupervised settings.We have omitted elastic measures that
based on the earlier analysis did not show competitive results.
We observe that GAK achieves comparable performance to
DTW under both settings. However, KDTW, significantly
outperforms DTW in both unsupervised and superivsed set-
tings. This is in contrast to TWE and MSM measures that
were significantly better only under the unsupervised set-
tings. To the best of our knowledge, this is the first time that
a kernel function is reported to outperform DTW in both
settings. We have also verified this under Wilcoxon.

9 TIME-SERIES EMBEDDING MEASURES
Previously, we studied approaches that directly exploit a
kernel function or a distance measure to compare time se-
ries. In this section, we study 4 embedding measures, which
are alternative approaches that employ a similarity measure
only to construct new representations [1]. These represen-
tations are similarity-preserving as the comparison of two
representations with ED approximates the comparison of
the corresponding original time series with the employed
similarity measure used to construct the representations.
We consider 4 approaches to construct embedding mea-

sures (i.e., ED over learned representations). Specifically,
we consider the Generic RepresentAtIon Learning (GRAIL)
framework, which employs the SINK kernel [109], the Shift-
invariant Dictionary Learning (SIDL) method, which pre-
serves alignment between time series [163], the Similar-
ity Preserving Representation Learning method (SPIRAL),
which employs DTW [82], and the Random Warping Series
(RWS), which preserves the GAK kernel [151].



Distance
Measure

Parameter
Tuning Better Average

Accuracy > = <

GRAIL LOOCCV ✘ 0.7407 56 8 64
RWS LOOCCV ✪ 0.7128 45 3 80

SPIRAL - ✪ 0.6494 26 4 98
SIDL LOOCCV ✪ 0.5759 12 1 115
NCCc - - 0.7309 - - -

Table 7: Comparison of embedding measures. “Better” de-
notes that the distance measure outperforms the baseline
with statistical significance. “Average Accuracy” shows the
mean accuracy achieved across 128 datasets. The last three
columns indicate the datasets over which a measure is bet-
ter (“>”), equal (“=”), or worse (“<”) than the baseline.

Evaluation of embedding measures: For all approaches,
we follow [109] and tune required parameters using the
recommended values from their corresponding papers. We
construct representations of same length (100) for fairness.
Table 7 presents the results against NCCc . We observe that
GRAIL, is the only framework that constructs robust repre-
sentations that when ED is used for comparison (under the
1-NN settings), it achieves similar performance to NCCc , but
without significant difference. All other embedding measures
perform significantly worse (marked with ✪) and none of
the embedding measures outperform DTW. We note, how-
ever, that embedding measures (as well as kernel methods),
achieve much higher accuracy under different evaluation
frameworks (e.g., with SVM classifiers), as shown in [109].
We leave such extensive analysis for future work.

10 ACCURACY-TO-RUNTIME ANALYSIS
Until now, we performed an extensive evaluation of distance
measures based on their accuracy results. However, it is also
important to understand the cost associated with each one
of these distance measures. In Figure 9, we summarize the
accuracy-to-runtime performance of the most prominent
measures. The runtime performance includes only inference
time (i.e., evaluation on the testing sets). We observe that
ED, and all lock-step measures (omitted), are the fastest, but
achieve relatively low accuracy (all these measures have
O(m) runtime cost). NCCc and SINK, two methods that rely
on the classic cross-correlation measure, provide a good
trade-off between runtime and accuracy in comparison to ED
(these measures have O(m logm) runtime cost). We observe
that all other elastic or kernel methods require substantially
higher runtime cost to achieve comparable accuracy results
to NCCc (these measures have O(m2) runtime cost). We also
observe that embedding measures show promise as they can
be both efficient and accurate. We note that for elastic mea-
sures, the runtime cost can be substantially improved with
the use of lower bounding measures (i.e., efficient measures
to prune the expensive pairwise comparisons). To the best
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Figure 10: Error rates with increasingly larger datasets.

of our knowledge, for NCCc and the kernel methods, no
lower bounding measures exist and, therefore, we leave such
extensive runtime analysis for future work. Finally, Figure
10 suggests that with increasingly larger dataset sizes the
classification error of ED may not always converge to the
error of more accurate measures, at least not always with the
same speed of convergence, which highlights the importance
of considering measures other than ED (see Section 2).

11 CONCLUSION
We presented a comprehensive evaluation to validate the
performance of 71 distance measures. Our study not only de-
bunked four long-standing misconceptions in the time-series
literature but also established new state-of-the-art results for
lock-step, sliding, elastic, kernel, and embedding measures.
Our findings prepare the ground to facilitate further devel-
opment of distance measures with implications to virtually
every task. With the new knowledge in place, several new
challenges open that we hope to sparkle new research direc-
tions. For example, identifying more accurate normalizations
will result in substantial improvement for many tasks. There
is a lack of methods for unsupervised tuning of parameters.
Finally, embedding measures might show the most promise
considering their runtime-to-accuracy trade-off.
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