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ABSTRACT
We propose PIDS, Pattern Inference Decomposed Storage,
an innovative storage method for decomposing string at-
tributes in columnar stores. Using an unsupervised ap-
proach, PIDS identifies common patterns in string attributes
from relational databases, and uses the discovered pattern to
split each attribute into sub-attributes. First, by storing and
encoding each sub-attribute individually, PIDS can achieve
a compression ratio comparable to Snappy and Gzip. Sec-
ond, by decomposing the attribute, PIDS can push down
many query operators to sub-attributes, thereby minimiz-
ing I/O and potentially expensive comparison operations,
resulting in the faster execution of query operators.
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1. INTRODUCTION
Due to effective compression for minimizing storage and

query latency, columnar systems are critical for modern data-
intensive applications that rely on vast amounts of data gen-
erated by servers, applications, smartphones, cars, and bil-
lions of Internet of Things (IoT) devices. By persisting the
same attribute from different records consecutively, colum-
nar systems enable fast scan operations by minimizing I/O
and efficient compression by keeping similar data physically
close. Since compressed data must be decoded each time a
query is executed, many columnar stores [4, 2, 3] allow for
lightweight encoding schemes over traditional byte-oriented
compression algorithms, such as Gzip and Snappy [1]. They
provide significant size reduction at the cost of high overhead
for decoding before reading data. Lightweight encoding is a
family of compression algorithms applicable to data streams
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MIR−00880−33BB1−512
MIR−00C80−33FB1−512
MIR−00000−337F1−4096
MIR−040C0−373F1−512
MIR−00000−337F1−4096
MIR−00C00−33F71−4096

(a) Machine partition

138A211 162
180B161 1126
120B181 771
228B149 550
177B153 362
183B109 507

(b) Ref ID

0101000020E61000000CFD083315C852C0F070116B33054440
0101000020E6100000AC88531328C352C028556E1E1E094440
0101000020E610000010A23DDD87C752COE0159AEE6C034440
0101000020E6100000CC490E29FDCE52C0289F52833B094440
0101000020E61000006495B3267FC752C048F580C01D004440
0101000020E61000004896C0D141C752C008D6E7CO6BFF4340
0101000020E6100000F426379E30CB52COCO6FC67A34F64340
0101000020E61000005C0170DFEFBE52COA0C125BBAA094440

(c) Log ID

Figure 1: Sample attributes with identifiable patterns.

of the same type, and has less compression/decompression
overhead [1] and in situ data filtering without decoding [15],
potentially at the cost of reduced compression.

In evaluating popular lightweight encoding algorithms and
Gzip on a large corpus of string attributes, we observe that
even with the best lightweight encoding applied, Gzip can
still further compress the encoded data on a large number
of attributes. By examining these attributes, we observe
that many of these attributes contain repetitive substrings
across values. An example is shown in Figure 1a, where all
rows contain “MIR”; “33F71” and “4096” also occur multi-
ple times. These substrings are captured by Gzip, but not
by lightweight encoding as compression is applied to the en-
tire attribute value. This difference leads to the performance
gap in the compression ratio between the two approaches.

We see that in many such attributes, these substring rep-
etitions can be captured by a simple pattern. In Figure 1,
we show excerpts from three attributes. It is obvious
that Machine Partition follows a pattern MIR-{hex(5)}-
{hex(5)}-{int}, where hex(x) represents any hexadecimal
number of x digits, and Ref ID follows pattern {hex(7)}
{int}. The pattern for column Log ID is less obvious, but
a closer look shows that all records have the same length, a
common header consisting of a 17-digit hexadecimal num-
ber, “52C0” in the middle, and a common tail “40”. We
can use these patterns to split string attributes into smaller
components that we call sub-attributes. By extracting the
sub-attributes and encoding them, we can potentially close
the gap between lightweight encoding and Gzip.

In this paper, we propose an innovative storage method,
Pattern Inference Decomposed Storage (PIDS) to exploit



patterns in string attributes to improve compression and
query performance. PIDS employs an unsupervised algo-
rithm to infer a pattern automatically from an input at-
tribute, if applicable, stores rows that do not match the
pattern as outliers, extracts sub-attributes from the matched
rows using the pattern, and compresses them independently.
PIDS is transparent to the user. While the sub-attributes
are physically stored separately, PIDS provides a logical
view that is identical to the original string attributes. PIDS
rewrites query operations on the logical view to operate on
sub-attributes to speed up execution.

The pattern inference algorithm in PIDS works by col-
lecting a set of samples from the input attribute and uses
a Programming-By-Example approach to extract patterns.
Besides lexical similarities, such as common symbols, it also
captures the semantic similarity within string attributes, al-
lowing observing more hidden patterns. The inference al-
gorithm provides a classifier recognizing whether or not a
string attribute contains a valid pattern, which helps pre-
clude them from the potential costly inference. PIDS also
provides an intermediate language to describe the pattern,
allowing it to quickly adapt to other inference algorithms or
use patterns provided by the end-user.

PIDS enables more efficient compression in two ways. Ex-
ploring patterns from string attributes allows common sub-
strings to be eliminated, such as removing MIR- from ev-
ery instance in Figure 1a. Additionally, the extracted sub-
attributes and outliers are stored as physically separated
columns, on which different encoding schemes can be applied
to improve compression efficiency. PIDS thus can provide
a compression ratio that is comparable to Gzip, while sup-
porting efficient encoding and decoding operations that are
comparable to lightweight encoding. We empirically evalu-
ate PIDS on a extensive collection of string attributes, show-
ing that a large portion of them contain a valid pattern and
get a compression benefit from PIDS.

PIDS uses patterns to gain insights on the attribute and
facilitates efficient execution of common query operators (in-
cluding equality, less and wildcard search predicates), and
materialization. Given a predicate "Machine Partition"=

"ABC", we know immediately that it does not match any
data that follows the pattern MIR-{hex(5)}-{hex(5)}-{int}.
PIDS also enables a query framework to “push down” the
predicates to the sub-attribute level, and potentially skip
data not matching the criteria to save disk I/O and decod-
ing effort. This is especially beneficial for wildcard queries.
For example, knowing that the first sub-attribute of ma-
chine partition is a 5-digit hexadecimal, we can push down
the predicate "Machine Partition" = "MIR-00880%" to its
sub-attributes, and get an equivalent query sub attr 1 =

00880. Compared to the original query, which performs a
wildcard match on the entire string, the new query only
needs to execute an equality check on one numeric sub-
attribute, saving both I/O and computation effort. This
brings up to 30x performance boost for operator execution.

The contribution of PIDS includes:
• An algorithm for discovering common patterns in string

type columnar datasets.
• An intermediate language, PIDS IR, for pattern descrip-

tion and compiling efficient ad-hoc code for sub-attribute
extraction and predicate execution.
• A PIDS prototype based on the Apache Parquet format

supporting the automatic inference of column pattern,

sub-attribute extraction, and query operators on the sub-
attributes.
In the rest of the paper, we discuss related work (Sec. 2),

present an overview of PIDS (Sec. 3), discuss the inference
algorithm (Sec. 4), describe sub-attribute extraction and
compression in PIDS (Sec. 5), explain how query operators
work with PIDS (Sec. 6), and present experiments on our
PIDS prototype (Sec. 7).

2. RELATED WORK
In this section, we discuss relevant background from two

areas, namely, data extraction and data compression.
Data Extraction: In general, inferring patterns from sam-
ples is a program synthesis technique known as Programming-
by-Example (PBE). A PBE algorithm automatically ana-
lyzes existing examples and generates programs that can be
applied to new examples. PBE has many applications in
data processing tasks that involve large amounts of input
data with indeterminate formats, such as in structured data
extraction [5, 22, 10, 21, 27, 11], table transformation [13,
6, 16], and entity augmentation [29, 31].

In PBE tasks, users often provide both input and out-
put example pairs [21, 6, 16]. By treating input and output
examples as states in a search space and by defining data
transformation operations as transitions between the states,
such a problem can efficiently be converted to a search prob-
lem. As the number of available states is usually exponen-
tially large, pruning techniques [21] and heuristics [16] are
usually employed to facilitate the search process.

For a large input dataset, as is in our case, it is often im-
practical for a user to provide output examples correspond-
ing to each input. The algorithms introduced by PADS [10]
and Datamaran [11] both follow a search-rank-prune pat-
tern process to automate pattern inference. Similarly to
the input-output example case, input examples are mapped
to a search space as the source state and transitions are
defined between states. However, instead of searching for
a given target, the algorithm computes all reachable states
from the source, ranks them with a custom scoring function,
and prunes the states with the lowest scores. This process is
repeated until a reasonably good target state is discovered.

Unfortunately, such search-rank-prune processes are often
time-consuming due to a large number of potential states.
Instead of searching all possible states, in PIDS, we use a
greedy search approach where, with the use of a heuristic
function, we evaluate all possible transitions from the cur-
rent state, choose the transition with the maximum gain,
and ignore the rest. By carefully designing the transition
rules and heuristic function, our approach becomes very ef-
ficient while achieving good accuracy performance. While
previous algorithms extract structures from ad-hoc unstruc-
tured log data, they have to make many assumptions on the
input data. Instead, PIDS targets data from the same at-
tribute in a relational database. Besides, PIDS employs a
classifier to filter out input data that is unlikely to contain
a structure. This allows PIDS to make fewer assumptions
on the input data and extract structures that are omitted
by the previous methods.

Table 1 compares the assumptions made by PADS, Data-
maran, and PIDS. We briefly introduce the assumptions
here; the detailed definitions can be found in Datamaran [11].
Coverage threshold assumes that the generated pattern mat-
ches at least a certain percentage of samples. PIDS does not



Table 1: Assumptions made by Extraction Algorithms.
Assumption PADS Datamaran PIDS
Coverage Threshold 8 4 8
Non-overlapping 4 4 8
Structural Form 4 4 4
Boundary 4 8 4
Tokenization 4 8 8

force a coverage threshold as it will generate a pattern that
always covers the entire sample set. Non-overlapping as-
sumes that the alphabets used in the pattern and field values
are not overlapping. In other words, a character c is either
part of a pattern or part of the extracted data, but not both.
In PIDS, any word can be either part of the pattern or the
extracted data. Structural Form assumes that the pattern is
a tree-like structure with each node as a sub-pattern. This
assumption is shared by all approaches. Boundary assumes
that the boundary of records can be easily identified be-
forehand. As PIDS processes input data from an attribute,
the input is well-bounded. Tokenization assumes that each
character can be tokenized as a part of the pattern or the
extracted data beforehand. PIDS does not make this as-
sumption and determines the role of each character dur-
ing inference. In Section 7, we empirically compare PIDS
against Datamaran.
Compression and Encoding: Lightweight encoding, such
as dictionary encoding, and LZ77 [32] are two popular fam-
ilies of compression algorithms adopted in columnar stores.
Lightweight encoding features high throughput and in situ
data filtering. LZ77 features higher compression ratios but
requires decompression before evaluation. By extracting
sub-attributes and applying a lightweight encoding, we achi-
eve a compression ratio comparable to LZ77 compression,
while preserving all the benefits of lightweight encoding.

Popular byte-level compression techniques, such as Gzip
and Snappy, both belong to the LZ77 family, which utilizes a
sliding window on an input data stream, looking for strings
that contain a recurring prefix, and encodes each string as a
reference to the previous occurrence. Gzip applies Huffman
encoding to the reference stream for a better compression
ratio [9] and Snappy skips that step for higher throughput.
LZ77 [32] has a theoretical guarantee for a good compression
ratio. However, it is a sequential algorithm and needs to
decompress an entire data block before the original data
can be accessed. This brings a high latency for accessing
the compressed data.

Lightweight encoding is a family of entry-level compres-
sion techniques. It transforms each data entry (an integer,
a line of text, etc.) in the input to a shorter representation.
Popular lightweight encoding schemes include dictionary en-
coding, bit-packed encoding, delta encoding, run-length en-
coding, and their hybrids [28, 7, 33, 18]. Lightweight en-
coding has very low CPU consumption as the operations
are usually simple and can often be performed in paral-
lel [15]. Lightweight encoding maintains entry boundaries
during compression, allowing access of compressed entries
without decoding the entire data block, and direct predicate
execution on compressed data, skipping decompression [15].

Another related research area is string dictionary com-
pression [24, 19]. Research here applies dictionary encoding
to the data, then compresses the dictionary entries using
methods such as prefix-coding and delta encoding. Such ap-
proaches also address repetitions of substrings in a string
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Figure 2: PIDS System Architecture.

attribute, but they help little for improving query execu-
tion. Additionally, these methods rely on sorting the string
dictionary for prefix-coding. In Section 7, we compare PIDS
with BRPFC [19], a state-of-the-art technique in this area.

Concurrent with our work, B. Ghita et al. [12] propose
a vision similar to PIDS: white-box compression. Here,
the authors propose learning patterns to split or merge at-
tributes, and apply compression on the new columns. Our
work differs in an emphasis on fast extraction, a simple
grammar-based pattern inference system, and a tight cou-
pling and evaluation of query operators.

3. OVERVIEW
In this section, we describe PIDS by using an example

to walk through its components. Figure 2 shows the major
components and execution steps in PIDS and their corre-
sponding sections in the paper. The system takes a colum-
nar string dataset as input, sampling data from each col-
umn to determine if there exists a common pattern in it,
and generates a pattern expressed in PIDS IR, the inter-
mediate representation used by PIDS to describe a pattern.
The generated pattern, together with the input attribute, is
sent to Sub-Attribute Extraction, which splits the data
record into sub-attributes. To improve system efficiency, it
employs the PIDS compiler to create a state machine for the
pattern matching and substring extraction tasks. If PIDS
cannot extract a pattern from the input columnar dataset,
PIDS treats the data column as a single sub-attribute and
uses existing lightweight encoding compression techniques,
such as Dictionary Encoding, to compress it.

The extracted sub-attributes are then exported to ex-
ternal storage as separate columns, which are stored and
compressed independently. As the pattern is inferred from
samples, there will be a chance that some rows are not in-
cluded in the sample and thus not described by the pattern.
PIDS addresses this problem by maintaining an outlier store,
which is separate from the sub-attribute columns. Rows
that do not match the pattern are considered outliers and
are stored in the outlier store in its original string form.

When executing a query operator, PIDS sends the request
to Operator Execution, which is responsible for pushing
down the operator to the sub-attribute columns, including
the outlier column. The Operator Execution also uses the
PIDS compiler to compile PIDS IR into data models and
code for data loading.



pattern := token | union | seq

token := const(val) // constant typed literal

| int // int of arbitrary length

| hex // hexadecimal number

| rangeint(min, max) // int with min, max

| flint(len) // fixed-length integer

| flhex(len) // fixed-length hex integers

| str // string of Unicode letters

| flstr(len) // fixed-length string

| sym(char) // non-letter/digit characters

| empty // no character

union := union pattern

| pattern

seq := seq pattern

| pattern
Figure 3: PIDS IR Grammar.

4. PATTERN INFERENCE
In this section, we describe the pattern inference used in

PIDS, which is a PBE problem with input-only examples.
PIDS uses a heuristic-based search algorithm to infer pat-
terns from examples. It treats each pattern as a state and
defines a series of transformation rules between patterns.
The algorithm starts from the pattern that is the enumera-
tion of all input examples, and searches for patterns that are
reachable from the starting state via the transitions. When
the search ends, the pattern with the highest heuristic score
is the final output.

First, we introduce PIDS IR, the intermediate language
used to described a pattern in Section 4.1, then we describe
the transition rules in detail in Section 4.2.

4.1 PIDS IR
PIDS IR is a concise language optimized for describing

common patterns in string datasets. The grammar of PIDS
IR is shown in Figure 3. The basic building blocks of a pat-
tern are tokens, unions, and seqs. The token family includes
basic types, such as const, int, hex, str, and sym. Instead
of hard-coding a list of symbols [11], PIDS marks all charac-
ters that are not Unicode letters or digits as symbols, to be
adaptive to multilingual applications. It also provides two
collection types, union and seq. A union represents a set of
patterns, of which at least one appears. A seq represents a
list of patterns that all appear in order. As an example, the
pattern shown in Figure 1a can be written in PIDS IR as

seq( const(‘MIR’) sym(‘-’) flhex(5) sym(‘-’)

flhex(5) sym(‘-’) int )

Similar IRs used in a previous work [10] often target data-
sets with more complex structures, such as a text corpus and
log data, and provide support for nested data structures
(i.e., dictionaries and arrays) and common data types (i.e.,
dates and timestamps). PIDS chooses not to support nested
data structures. As many systems [4, 23] already provide na-
tive support for nested data structures, users who need these
structures are more likely to directly leverage the native for-
mat, instead of packing the structure into a string column.
It also does not include these common complex types. If
these structures were to appear in the target dataset, they
can easily be captured by the inference algorithm and rep-
resented in PIDS IR. This minimizes the number of built-in
terms in the language, making it more concise. In Section 7
we show this also facilitate efficient queries.

Patterns written in PIDS IR can be easily transformed
into other descriptive formats or machine code for pattern

[INFO]Server starting @ LV1

[WARN]No config info provided @ LV2

[DEBUG]Checking connections @LV3

[ERROR]Network disconnected

[

INFO

WARN

DEBUG

ERROR

]

Server starting

No config info provided

Checking connections

Network disconnected

@

LV1
LV2
LV3
<empty>

Figure 4: Splitting a union with common symbols.

processing. For our prototype evaluation, we develop a li-
brary to generate regular expressions from PIDS IR and a
compiler to directly generate Java bytecode from PIDS IR
for query operator evaluation and sub-attribute extraction.
The same approach can also be generalized to other lan-
guages and platforms, such as translated into LLVM [20].

4.2 Pattern Inference Algorithm
As described above, the inference algorithm works as a

heuristic-based search, starting with generating an initial
pattern, which is simply a union of all input examples, each
as a const token, and iteratively applying transition rules to
it until no further optimization can be done. We categorize
the transition rules into two phases: Splitting and Pruning.
Splitting: In the splitting phase, PIDS performs a depth-
first-scan on the pattern tree and looks into each union it
encounters, searching for common tokens in union members.
PIDS splits the union members into “columns” using these
common tokens, and represents each column as a shorter
union. This converts the original union into a seq of smaller
unions and common tokens. We show an example in Fig-
ure 4, where the algorithm discovers “[”, “]”, and “@” as
common tokens, and converts the original union into a seq
containing three symbols and three shorter unions. In the
splitting phase, PIDS applies three rules iteratively on the
union to discover common patterns from its members.

The first rule, CommonSymbol, looks for symbols that are
non-alphanumeric characters, such as hyphen, brackets, com-
mas, and colons. These symbols commonly serve as sepa-
rators between different parts of the input [10, 11]. For
this reason, PIDS prioritizes the CommonSymbol rule by a
“majority-take-all” approach. PIDS recognizes a symbol as
a common one as long as it appears in a majority of the
members (e.g., 80%). As shown in Figure 4, where the sym-
bol “@” is extracted even if the last line does not contain it.
An empty is left for the member without the symbol.

The second rule, SameLength, targets unions that have
members with the same number of characters. In practice, it
is fairly common that values from the same column have the
same length, as in Figure 1c, which can serve as an indica-
tor that some pattern exists for the data. This rule assumes
that characters at the same position of each union member
are the same type, and learns a character’s type from all
members. For example, given a union containing three const
“ABDEAABD”, “PA305402”, and “UP25CE38”, we can de-
termine that the first two characters are letters and the re-
maining six characters are hex digits. This union can thus
be split by the SameLength rule into two smaller unions.

Finally, if none of the above rules apply, PIDS uses the
CommonSeq rule to look for common sequences of tokens
among union members. This rule employs a dynamic pro-



gramming algorithm to look for the longest common sub-
sequence from two sequences. By applying this algorithm
to the first two union members, we obtain a list of com-
mon subsequences. These subsequences are then compared
against the next union member, leaving us with the common
subsequences among the first three members. Repeating this
process gives us the common subsequences among all union
members, which can then be used to split the union.
CommonSeq also uses word2vec to recognize similar words

in text and uses them as separators to extract patterns.
Due to a lack of training corpus, PIDS does not train the
word2vec model itself. Instead, it utilizes Glove [26], a pre-
trained word2vec model, to convert the words in an input
attribute into vectors. PIDS then goes through each record
in the attribute, looking for a set of words whose pairwise co-
sine similarity is greater than a user-defined threshold. For
example, when dealing with a string attribute of U.S. postal
addresses, PIDS recognizes that the set of words “Road”,
“Street”,and “Avenue” has a large pairwise cosine similarity.
PIDS uses these words as separators to split input records.
Pruning: In the pruning step, PIDS cleans up the pat-
tern generated in the splitting phase by removing redun-
dant structures and merging adjacent tree nodes. This step
creates a concise tree and allows the next iteration to be
executed more efficiently.

PIDS executes three rules to prune the pattern tree. The
Squeeze rule removes all unnecessary or duplicated struc-
tures, such as seqs and unions containing only one member.
We list part of the transforming rule below:

seq(a) => a

seq(a, empty, b) => seq(a, b)

union(a) => a

where “a”,“b” represent arbitrary patterns.
MergeAdjacent searches for adjacent tokens of the same

type in a seq, and merges them together if possible.
The Generalize rule replaces a union of consts with gen-

eralized tokens such as str or int. For example, union(213,
42, 442) can be rewritten as either int or rangeint(42,

442). Since flint, rangeint, and flstr contain more in-
formation about the underlying data, PIDS priorities them
and only falls back to more general int and str upon failure.

By repeatedly executing these two phases, PIDS gradually
constructs a concise pattern from the given samples. We
use Figure 1a as an example to show how this works. In
the splitting phase, PIDS utilizes the CommonSymbol rule to
discover hyphens in the records as separators and obtains
the following pattern.

seq( const(‘MIR’) sym(‘-’) union(00880, 04C80, ...)

sym(‘-’) union(33BB1,33FB1,...) sym(‘-’)

union(512,1024,...) )

In the pruning phase, PIDS executes the Generalize rule
on the unions, converting them into generalized tokens, and
obtains the final result.

seq( const(‘MIR’) sym(‘-’) flhex(5) sym(‘-’)

flhex(5) sym(‘-’) int )

5. SUB-ATTRIBUTE EXTRACTION AND
COMPRESSION

In this section, we present how PIDS extracts and stores
sub-attributes. Section 5.1 describes the data extraction

algorithm, Section 5.2 introduces how PIDS handles outliers,
and Section 5.3 discusses how PIDS stores and compresses
data and how it can improve compression efficiency.

5.1 Sub-Attribute Extraction
PIDS uses a state-machine based algorithm to extract sub-

attributes from a target attribute. It randomly samples n
rows for the target attribute and applies the pattern infer-
ence algorithm described in the previous section to generate
a pattern from the samples. Let s = seq(p1, p2, . . . , pn) be
the pattern generated from the samples. Each pi that is not
a const or sym represents an extractable sub-attribute. We
construct a directed acyclic deterministic finite state ma-
chine (DA-DFS) that describes s as follows.

1. Every token can be represented by a DA-DFS. const and
sym correspond to DA-DFSs that accepting the string
literals they hold. int, hex, str and their fixed length
version correspond to DA-DFSs that takes the required
number (can be infinite) of digits or letters.

2. If s1, s2 can be represented by DA-DFS d(s1), and d(s2),
a DA-DFS for seq(s1, s2) can be constructed by merging
the last state of d(s1) with the first state of d(s2).

3. If s1, s2 can each be represented by DA-DFS d(s1), and
d(s2), a DA-DFS for union(s1, s2) can be constructed
by merging the starting states of d(s1) and d(s2), and
merging all states reachable from the starting state via
the same transition sequence.

PIDS generates a DA-DFS from the pattern and marks
the states representing the start/stop of each sub-attribute.
When the state machine processes an input string, it will
extract the sub-strings corresponding to each sub-attribute
when the execution reaches these marked states.

State machines are usually implemented using a 2D ar-
ray as a lookup table to store the transitions. As a result,
each state transition involves several memory access opera-
tions. Since the size of the lookup table is the product of
the number of states and alphabet size, for large alphabets,
the size of the lookup table easily exceeds the L1 cache size
as the number of states increases, making state transitions
less efficient.

As the transition table is immutable during state ma-
chine execution, and the number of transitions from a single
state is usually small, most entries in the 2D array table are
empty. PIDS implements the state machine efficiently by
hard-coding state transitions. It only uses switch and if

statements to implement state transitions and sub-attribute
extraction, eliminating memory access to improve efficiency.

We use the PIDS compiler to generate ad-hoc code given
a pattern instance. In our prototype developed in Java, the
compiler builds the DA-DFS from PIDS IR in memory, then
uses the ASM library [8] to generate bytecode equivalent to
the state machine. Finally, it loads the generated bytecode
into JVM and applies it to the target attribute for sub-
attribute extraction.

5.2 Handling Outliers
From Section 4 we know that the pattern generated by

the inference algorithm is guaranteed to match all samples.
However, some records may exhibit a different pattern that
are not included in the samples. These records fail to be
matched by the state machine and are called outliers. An
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Figure 5: Sub-attributes are ordered as the original records
and outliers are stored separately with an explicit row ID.

example is shown in Figure 5, where the dataset contains
two types of records, valid phone numbers and a constant
value “undefined”. PIDS matches the phone numbers, and
treats the “undefined” records as outliers.

As outliers cannot be split into sub-attributes, we store
them independently from where the sub-attributes are stored.
To retain the offset information for each record, which is
often used as a join key when columnar stores materialize
multiple attributes, we put the records in the sub-attribute
table at the same offset as they are in the original table,
inserting null at locations corresponding to outliers. Note
that a null value in the original attribute will be treated as
an outlier, and can be easily distinguished from null values
that serve as placeholders for outliers. In the outlier store,
we note the offset and the value explicitly as two columns.

We make this design decision based on two observed facts:
• The number of outliers should be small compared to the

total number of records. PIDS targets datasets that can
be described by a single pattern. If the number of outliers
exceeds a certain level, then the dataset is not a good fit
for PIDS.
• Most operators need to access either the sub-attribute ta-

ble, or the outlier table, but not both. When an operator
matches the pattern, we know it either targets the sub-
attribute table or the outlier table. Only a limited number
of operators, such as sorting and materialization need to
access both tables.
As the number of outliers tends to be small, storing a row

ID explicitly for them will save space, while still allowing
us to restore outliers to their correct position during mate-
rialization. We execute operators that need to access both
tables on each table separately, and merge the result. More
details on operator execution can be found in Section 6.

5.3 Storage and Compression
Our PIDS prototype utilizes the Apache Parquet [4] stor-

age format for its popularity and flexibility. A Parquet file
consists of multiple row groups, which serve as a horizontal
split of the columns. A row group contains several column
chunks, each containing the data of one column in that row
group. Data in a column chunk are stored continuously on
disk and can be loaded efficiently with a sequential read.
The data in column chunks are organized into pages, with
each page as the unit for encoding and compression.

PIDS stores and compresses each sub-attribute indepen-
dently as a column, using a dictionary and bit-pack-run-
length hybrid encoding. It maintains an independent dic-
tionary for each column chunk that translates distinct en-
tries in the target sub-attribute to an integer code, then use
run-length and bit-packing to compress the integer codes.

In practice, we notice that there are two types of at-
tributes on which PIDS does not work well. The first type
is attributes with no patterns, such as attributes with single

word or natural language text. The second type is attributes
with low cardinality. If an attribute already has a low cardi-
nality, the extracted sub-attributes will likely to have simi-
lar cardinality. For such attributes, directly compressing the
original attribute using a single dictionary is more efficient
than compressing each sub-attribute using separated dictio-
naries. PIDS uses a classifier to recognize these attributes
and compresses them as a single sub-attribute. To efficiently
recognize and exclude these attributes, PIDS employs a k-nn
classifier with Euclidean distance that weights nearest neigh-
bors using their inverse squared distance. We use our public
dataset as the training set and label attributes as positive if
PIDS encodes smaller than the best encoding, and negative
otherwise. We evaluate the accuracy of the model using 5-
fold cross-validation (fitcknn with kfoldPredict in Matlab)
with the following features from a string attribute:
• Ratio of Distinct Values cardinality

num of records
• Mean and variance of record length
• Mean of Shannon Entropy of each record

6. OPERATOR EXECUTION
To support efficient query execution directly on sub-attri-

butes, we describe how PIDS supports common query opera-
tors, including predicate filteringand materialization. Many
operators can be “pushed down” to sub-attributes, such that
the operator can be decomposed into several independent
operators on each sub-attribute, and the results from each
sub-attribute can be combined to obtain the final output.
Pushing down operators to sub-attributes also enables incre-
mental execution, where we execute operators on the sub-
attributes one at a time, skipping records on sub-attributes
for which previous executions have determined that an at-
tribute cannot satisfy the operator. For example, when ex-
ecuting equality predicate on a phone number, if the first
sub-attribute (area code) does not match the predicate con-
stant on some rows, we know that these rows do not match
without examining the other sub-attributes. When scan-
ning the remaining sub-attributes, we can skip these rows,
saving I/O and decoding effort, thus speeding up the exe-
cution. Query rewriting from string operations (e.g. like,
=, 6=, or <) to sub-attribute operations is done by PIDS
and is transparent to the user. For operators that cannot
be pushed down to sub-attributes, PIDS materializes sub-
attributes into an in-memory data structure before applying
the operator. For exposition we start with an assumption
that all sub-attributes are of fixed length. In Section 6.4, we
introduce how PIDS handles comparisons on sub-attributes
of variable length.

6.1 Efficient Data Skipping
PIDS implements data skipping by using a bitmap to

mark the positions of rows that need to be evaluated on
the next sub-attribute, and update the bitmap after each
sub-attribute evaluation. For our Parquet-based prototype,
data skipping occurs at three levels.
• Column Chunk Level. PIDS first consults the bitmap to

see if a column chunk contains rows to be accessed, then
uses zone map information to determine if a column chunk
can be skipped for a given operator. Skipping a column
chunk saves disk I/O.
• Page Level. Similar to column chunk level, PIDS uses

both bitmap and zone map to perform page-level skipping.
Skipping pages saves decompression effort.



• Row Level. When scanning data on a sub-attribute, PIDS
uses a bitmap to locate the next row to be read, skip-
ping all rows in between. If the rows are encoded using
lightweight encoding, PIDS skips the bytes without de-
coding them. Skipping rows thus saves decoding effort.

6.2 Predicate Filtering
We define a predicate as a tuple (OP, a), where OP is

the operation and a is the constant. For example, (less, 5)
on column x evaluates to true for all values where x < 5.
PIDS implements three relational predicates equal, less,
and like. Other predicates, such as greater-equal, can be
obtained through logical combinations of the existing ones.

All three predicates support pushing down the operators
to sub-attributes. When executing a predicate, PIDS first
matches the constant against the pattern. If they do not
match, execution terminates with no disk access involved.
Otherwise, we use the match result to push down the predi-
cate to the sub-attributes. We use x to represent the target
column, which consists of sub-attributes x1, x2, . . . , xm, and
assume that the constant a of the predicate has a match
(a1, a2, . . . , am) to the pattern.

6.2.1 Equality Predicate
The equality predicate (equal, a) can be decomposed as

x = a ⇐⇒ ∧m
i=1(xi = ai), that is, x = a if and only if the

equality xi = ai holds for all sub-attributes xi.
To skip as many rows as possible, PIDS uses a histogram

to estimate the selectivity of xi = ai, and scans xi in increas-
ing order of selectivity. For example, if x1 = a1 is expected
to match 10% of rows and x2 = a2 is expected to matches
5% of rows, we first execute x2 = a2, then x1 = a1 to allow
more rows to be skipped. PIDS uses a bitmap to mark the
positions where all sub-attributes xi scanned so far satisfy
xi = ai and the equality check on the next sub-attribute is
performed only on the marked positions.

When performing an equality check on sub-attributes,
PIDS utilizes the encoding dictionary to translate the pred-
icate constant into an integer code and performs the equal-
ity check on encoded data directly [15] to save decoding
effort. If the constant is not in the dictionary, the entire
sub-attribute can be skipped.

6.2.2 Less Predicate
When the sub-attributes are all fixed length, a less pred-

icate (less, a) can be pushed down to sub-attributes as a
combination of xi < ai and xi = ai. If x1 < a1, we have
x < a. Otherwise if x1 = a1, we proceed to check x2. Again,
if x2 < a2, we have x < a. Otherwise if x2 = a2, we pro-
ceed to x3. This process is repeated until all xi have been
processed. Formally, this can be written as

x < a ⇐⇒ ∨m
i=1[∧i−1

j=1(xj = aj) ∧ (xi < ai)]

PIDS maintains two bitmaps, result for the positions sat-
isfying x < a so far, and posToScan for the positions to scan
on next sub-attribute. They are updated as follows in the
i-th iteration.

posToScani = posToScani−1 ∧ (xi = ai)

resulti = resulti−1 ∨ (posToScani−1 ∧ (xi < ai))
(1)

PIDS iterates through all sub-attributes, computes xi = ai

and xi < ai on rows marked by posToScan, and updates

the bitmaps using Equation (1). When the iteration ends,
result stores all records satisfying x < a.

6.2.3 Like Predicate
Some like predicates, such as prefix or suffix search, may

only need to access a limited set of sub-attributes, which is
identifiable by matching the predicate to the pattern. For
example, assume we have a pattern for phone numbers as
seq( sym(‘(’) flint(3) sym(‘)’) flint(3) sym(‘-’)

flint(4)). A prefix search (like, ‘(345)44%’) has a unique
match on the phone number pattern as (345, 44%, %), and
can be pushed down to sub-attributes as x1 = 345 ∧ x2 ∼
44%, where we use ∼ to denote the like predicate. Similarly,
a suffix search (like ‘%442’) has a match (%, %, %442) and
can be pushed down as x3 ∼ %442. These predicates are
then evaluated using a similar approach as in the equality
case. We first sort sub-attributes based on their selectivity
and iterate through each xi, executing the predicates. This
allows PIDS to greatly simplify the execution of many prefix
and suffix queries as it can directly skip sub-attributes that
are not included in the predicates. This approach also ap-
plies to some wildcard queries. For example, (like, %4242%)
can be pushed down as x3 = 4242 when we discover that
only sub-attribute x3 contains four-digit numbers.

A challenge to this approach is that in some cases the con-
stant containing ‘%’ can have multiple matches on the pat-
tern. For example, “(123)%432%” has two matches against
the phone number pattern, (123, 432, %), and (123, %,
%432%). They lead to different execution results, and both
need to be included in the final result.

PIDS solves this by collecting all possible matches, push-
ing each of them down to the sub-attributes, and merg-
ing and simplifying the generated expression. The exam-
ple above can be written as follows when pushing down to
sub-attributes: (x1 = 123 ∧ x2 = 432 ∧ x3 ∼ %) ∨ (x1 =
123 ∧ x2 ∼ % ∧ x3 ∼ %432%). This is simplified to x1 =
123 ∧ ((x2 = 432) ∨ (x3 ∼ %432%)). PIDS first executes
x1 = 123, getting a bitmap, and uses that bitmap to skip
rows when scanning x2 and x3.

6.3 Materialization
PIDS implements two types of materialization operations,

string materialization and fast materialization. String ma-
terialization reads fields from all sub-attributes, and com-
poses them back to the original string format according to
the pattern. This is applied to a column when a projection
is performed. However, sometimes we materialize a column
not for output, but only to execute operators that cannot
be pushed down to sub-attributes, such as joins or hash-
ing for group-by aggregations. In these cases, we only read
fields from each sub-attribute and keep the values in an in-
memory structure and not do convert the values into strings.
It also excludes the content of the pattern. We call this fast
materialization.

PIDS executes both types of materialization by reading
out each sub-attribute in order and storing the values in
an in-memory structure. When performing string materi-
alization, PIDS further converts each field in the structure
to strings and injects them into the proper position in the
pattern. Although the algorithm is straightforward, it can
become a performance bottleneck since each sub-attribute
brings overhead for decoding and formatting, and this over-
head accumulates as the number of sub-attributes increases.



PIDS applies many optimization techniques to mitigate
overhead, including a fast algorithm to convert an integer to
string, and a cache-friendly implementation to read the sub-
attributes in blocks. In the prototype we developed using
Java, we create a sizeable native memory as a buffer to avoid
the instantiation of too many string objects and relieve the
overhead brought to JVM garbage collection.

6.4 Sub-Attribute of Variable Length
In operators involving comparisons, such as less predicate

and sorting, we push down the operators to sub-attributes
based on the assumption that the ordering of the original
attribute is uniquely determined by the ordering of its sub-
attributes. For example, on an attribute x with two sub-
attributes x1, x2, x1 < a1 ∨ (x1 = a1 ∧ x2 < a2) =⇒ x < a.
This is true when the sub-attributes only contain rows of the
same length, but the situation becomes more complicated
when some sub-attributes contain rows of variable length.
An example is shown below on the left, where x2 has variable
size of 2 to 4.

x1 x2 Padding x2 Add Length
e1:313 -3195 -T → 3195 → 31954
e2:313-42-T → 4200 → 42002
e3:313 -420-T → 4200 → 42003

By simply extracting the sub-attributes and comparing
them, we have e2.x2 = 42 < 3195 = e1.x2 =⇒ e2 <
e1, while the right order should be e1 < e2 under string
comparison. To correct this, we pad the data to restore
their correct order. This padding is applied to data on the
fly when performing comparisons and has no impact on data
stored on disk.

In the example above, we see that the symbol following x2

is a dash, which has a smaller ASCII code than the digits.
Thus, we right-pad x2 with 0 (marked in red, underlined)
to length 4, which restores the correct order of e1 and e2.
This padding now makes e2 and e3 indistinguishable, for
the correct order of e2 < e3. As shorter entries in x2 are
smaller, we append the entries with their original length
(marked in blue, underlined) to break the tie. After the
padding, the entries in x2 satisfy ei.x2 < ej .x2 =⇒ ei < ej .
When the following separator is greater than a digit, the al-
gorithm right-pads the entry with 9 instead of 0. And as
shorter entries are larger when the separator’s ASCII code
is larger than a digit, e.g., ‘42:’>‘429:’, the algorithm ap-
pends maxLen-len(value) in this case, where maxLen is the
maximal length of the target sub-attribute.

If a sub-attribute of variable length is a string type, we pad
the first symbol following that sub-attribute to the value,
and perform natural string comparison. For example, to
compare addresses with two sub-attributes “Chicago, IL”
and “Milwaukee, WI”, we compare “Chicago,” and “Mil-
waukee,” by including the comma.

6.5 Handling Outliers
As described in Figure 5, PIDS stores outliers in a separate

location in the original string format, along with its row
ID. When we choose a valid pattern, the number of outliers
should be relatively small, and we reasonably assume that
the entire outlier table can be materialized in memory.

As outliers are stored in their original string format, all
operators can be applied directly. When executing opera-
tors, we merge the outlier result with the result from the

main table. Depending on the type of operator, different
merging strategies are adopted.

For predicate execution, we generate a bitmap sized to
the original data, marking the row ID of outlier records that
satisfy the predicate, then perform a logical OR operation
between the main data bitmap and the outlier bitmap to
get the final result. For equality predicate, we notice that
if the predicate matches the pattern, the result must be
either be in the main table or the outlier table, but not
both, so we only need to query one table, saving the logical
OR operation.

For materialization, we need to merge the result from the
main table with the outliers. We first materialize the outlier
table as a memory buffer. When materializing data from the
main table, we check null values that indicate the occurrence
of outliers, and use the null value’s position as the row ID
to look up the memory buffer for the corresponding value.
The value is inserted into the results from the main table.

7. EXPERIMENTS
In this section, we present the experiment results showing

that PIDS improves both compression and query efficiency
in a columnar store. We develop a prototype of PIDS in
Java and Scala, using the Apache Parquet columnar storage
format [4]. Our experimental platform is equipped with 2x
Xeon Silver 4116 CPU, 192G Memory, and a NVMe SSD.
It runs Ubuntu 18.04 LTS, OpenJDK 1.8.0 191, and Scala
2.12.4. For all throughput results, we report the average
throughput of ten runs of a fixed duration after warm-up.
We run the experiments on target attributes with uniformly
randomly generated predicates for each execution.
Datasets: We use two datasets in the experiments. To
justify that PIDS is widely applicable, we use a dataset
consisting of 9124 string attributes, collected from various
real-world data sources, such as open government sites, ma-
chine learning, social networks, and machine logs. The data
sources details can be found at https://github.com/UCHI-
DB/comp-datasets.

To evaluate operator execution efficiency, we choose four
representative string attributes: Phone Number, Timestamp,
IPv6, and Address. We generate IPv6 and Phone Num-
ber data uniformly, Timestamp data uniformly in a 10-year
span, and Address data using a TPC-DS data generator [25].
For each attribute, we target a number of records that re-
quire 128 MB of space in PIDS. Table 2 shows examples of
these attributes and the number of records.
Baselines: In our experiments, we compare PIDS against
popular string encoding/compression algorithms, including
Parquet with no encoding, Parquet with lightweight encod-
ing, Snappy, Gzip, and a Block Re-Pair Front-Coding
(BRPFC) dictionary [19]. BRPFC encodes an attribute us-
ing a dictionary, sorts the dictionary entries, then applies
Front Coding and Re-Pair [18] on the entries. We imple-
ment BRPFC in the Apache Parquet framework and verify
that our implementation has comparable performances to
the original version. Due to a lack of support for SIMD in
Java, we implement a scalar version of BRPFC, and use the
SIMD improvement factors reported in the original paper to
estimate the performance of a SIMD version [19].

In these baseline algorithms, the attributes are stored as
string types in Parquet. For lightweight encoding, we em-
pirically choose the encoding schemes in Parquet with the



Table 2: Representative attributes used in our evaluation.

Attribute
Sub

Attrs
Rows

(million)
Example

Phone 3 35 (312)414-4125
Timestamp 8 20 2019-07-25 12:30:01 3424.24232

IPv6 8 10
3D4F:1342:4524:3319:8532:0062
:4224:53BF

Address 8 13
121 Elm St., Suite 5, Chicago,
Cook County, IL 60025

Table 3: PIDS achieves the best compression ratio on both
the entire dataset of 9124 String Attributes (All), and the
set of attributes filtered by the classifier (Cls).

Best

Raw PIDS Enc. Snappy Gzip BRPFC

All 106G 14.6G 18.8G 33.1G 18.2G 26.6G

Cls 45G 4.2G 8.4G 9.8G 5.1G 7.8G

smallest compressed file size on the target attribute, referred
to as Best Encoding in the rest of the paper.

Many DBMS have specific data types for timestamp data,
usually backed by 64-bit integers. Storing timestamps as in-
tegers helps achieve better compression, but requires extra
effort if users want to query partial fields, such as month or
date. We include this approach in the baseline, referred to
as 64-bit Int in the experiments, to show that PIDS facili-
tates more efficient query operators and comparable storage
benefits.

7.1 Compression Efficiency
In this section, we evaluate the compression efficiency of

PIDS. In Table 3 we show the compressed size and com-
pression ratio of PIDS against the baseline methods on the
dataset of 9124 string attributes, and on the attributes rec-
ognized by the classifier. We see that in both cases PIDS
has achieved the best compression ratio, and is 20% smaller
than Gzip, which is the second best. The classifier recognizes
2868 attributes as compressable and achieves an accuracy of
91.2%. PIDS infers valid patterns from 4,596 (50.73%) at-
tributes. Of these attributes, 3,214 fully match the pattern
(no outliers), and the overall average outlier percentage is
0.6%. The average length of attributes with a pattern is 19,
and the average number of sub-attributes is 7. We extracted
32,105 sub-attributes, with 50% integer and 50% string .

In the top sub-figure of Figure 6, we evaluate PIDS and
the baseline methods on the four attributes used in operator
evaluation. For compression, PIDS outperforms all other
approaches on the 4 attributes and achieves a 2-3 times
size reduction compared to Snappy, a popular compression
method used in many columnar stores. Figure 6 also shows
that Timestamp compressed with PIDS has similar size as
that stored in 64-bit Integers. In PIDS, all sub-attributes
are bit-packed, and the total number of bits they occupy is
no larger than a 64-bit integer.

The bottom sub-figure of Figure 6 shows the throughput
of end-to-end compression for all approaches, which mea-
sures the time consumption including pattern inference, ex-
traction, encoding, and persistence. BRPFC has a through-
put that is 10x slower than others largely due to the recur-
sive pairing step, making it almost invisible in the figure.
PIDS’s throughput varies by attribute. On the phone at-
tribute, PIDS is slightly faster than Snappy, while on address
and IPv6, PIDS is about half as fast as Snappy. To under-
stand the factors impacting PIDS’s encoding performance,
we study how much time each step consumes. As pattern
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Figure 6: Comparing PIDS compression performance in
both size and end-to-end compression throughput.
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Figure 7: Compression time breakdown. PIDS spends
more time on attributes with more sub-attributes, higher
cardinality, and more string sub-attributes.

inference takes a constant amount of time, and disk IO is
10-20x faster compared to the overall throughput, we focus
on the data extraction and encoding steps. In Figure 7a,
we see that PIDS spends about 80% on the encoding step,
which is also the source of the variance in the throughput.

As encoding is done on each sub-attribute independently,
in Figure 7b we study the decomposition of time consump-
tion to process one sub-attribute on the four attributes.
IPv6 and Address spend significant time on dictionary en-
coding because their sub-attributes have a larger cardinality
and need to maintain a larger dictionary. The average car-
dinality for the sub-attributes in IPv6 is 65,536, and for
Address it is 100,000. Whereas Phone is 4,000, and Times-
tamp is 3,784. Moreover, Figure 7b shows that Address
spends much time on converting data to bytes, which the
other three attributes do not. Table 2 shows that while
Timestamp, IPv6 and Address all have 8 sub-attributes, all
sub-attributes in Timestamp and IPv6 are integers, while 6
of 8 sub-attributes in Address are strings. Encoding strings
to bytes takes much more time than encoding integers. The
analysis above suggests that PIDS performs better on sub-
attributes with low cardinality and few string types.

7.2 Operator Execution
In this section, we show that PIDS accelerates common

query operators. Comparing the same operators on the same
dataset stored in string format, PIDS brings at least 2 times
performance improvement to all predicate execution tasks.
In some tasks, such as prefix search, the improvement can
be over 30 times.
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7.2.1 Predicate Filtering
We compare the performance of PIDS on various predi-

cates against the baselines. In addition to the straightfor-
ward equality and less predicates, we also test prefix, suf-
fix, and wildcard predicates. Examples of these queries are
given in Table 4. We experiment with two types of wildcard
predicates. “Fast Wildcard” is a wildcard predicate that
has a single match against the pattern. When executing
a fast wildcard predicate, PIDS can push down the pred-
icates to only the involved sub-attributes, ignoring other
sub-attributes, and speed up the execution. For example,
“%33:27%” is a fast wildcard predicate for the timestamp
attribute, as it only matches the minute and second sub-
attributes. A “Slow Wildcard” is a wildcard predicate that
has more than one match against the pattern. In the worst
case, PIDS needs to scan all sub-attributes when execut-
ing these predicates. “%12%” is a slow wildcard for the
timestamp attribute as it can potentially match any sub-
attribute for timestamp. To execute this predicate, all eight
sub-attributes and the whole data file need to be accessed.

The experimental results are shown in Figure 8. We do
not test the less predicate on the address attribute since
it makes no practical sense. On the equality and less predi-
cates, PIDS beats all string-based competitors by 2-10 times.
This improvement primarily comes from data skipping by
progressively filtering sub-attributes. For example, when ex-

Table 4: Examples of wildcard queries.

Prefix Suffix
Fast

Wildcard
Slow

Wildcard

Phone (377)62% %524 %42-47% %24%

IPv6 24BD:52% %1B2D %243B% %1D%

Timestamp 2017-09% %24389 %33:27% %16%

Address 121 Elm St.% %IL,32036 %Chicago,IL% %Cook%

ecuting an equality predicate on the IPv6 attribute, PIDS
scans on average only 2.006 sub-attributes per execution,
and accesses 24.35% of the whole data file.

On prefix, suffix, and most fast wildcard predicates, PIDS
beats all string-based competitors by 10-30 times. As we
have seen in Section 6.2.3, we can convert these predicates
to equality or like predicates on one or two sub-attributes,
making it even more efficient than equality predicates. The
only case where fast wildcard does not have obvious per-
formance improvement is on the IPv6 attribute, where all
sub-attributes have the same length. A wildcard predicate
such as x ∼%1A2B% can match any sub-attribute, requir-
ing executing equality predicates on all eight sub-attributes.
However, as an equality comparison is faster than a wildcard
search, PIDS manages to obtain 2 times throughput com-
pared to its fastest competitor. The only case where PIDS
does not work well is the slow wildcard, where it needs to
execute like predicates on all sub-attributes. Nevertheless,
PIDS still yields similar performance to Snappy.

For Timestamp stored as 64-bit integers, we implement
prefix query with range predicate, and suffix query with
modular operation to compare against PIDS. We see that
on equality, less, prefix and suffix queries, PIDS is consis-
tently 20% faster than 64-bit integer, due to data skipping.
In addition, 64-bit int performs poorly on wildcard pred-
icates, which require converting 64-bit Int to date string.
The numbers are too small to be visible in the figure.

In Figure 9, we show a cost breakdown of equality pred-
icates on the timestamp and address attributes, to help us
understand how PIDS achieves its performance boost. We
do not include Gzip and BRPFC in the figure as they con-
sume much more time compared to others. Including them
makes the details of other results hard to interpret. Not sur-
prisingly, both Gzip and BRPFC spends the majority of the
time in decompression. We see that the string-based com-
petitors spend a considerable amount of time on I/O and
incur large overhead in computation (primarily string com-
parison). Best (Lightweight) Encoding and Snappy both
spend a significant amount of time on decoding/decompres-
sion. PIDS has a smaller file size, which saves I/O and it
uses a dictionary to translate all predicates into integer com-
parisons, saving computation effort. By pushing down the
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predicates to sub-attributes, and performing data skipping,
PIDS further reduces I/O and decoding overhead.

PIDS executes the pattern inference and data extraction
task only once when it persists an attribute as a collection of
sub-attributes. These steps in PIDS are similar to the com-
pression step in Snappy and Gzip. When PIDS executes
a query, it accesses each sub-attribute directly by pushing
down the predicate. The query operation thus involves no
pattern inference or data extraction operation and is trans-
parent to the user. In Figure 10, we compare the end-to-end
time consumption to read 500MB textual records from disk
file, perform compression and persist to disk, then conduct
multiple equality queries operations against the compressed
file with Snappy, Gzip, and PIDS. Each query performs data
decompression before execution. While PIDS takes slightly
longer time when compressing data on some attributes, the
overall time consumption is compensated by the fast query
execution. Only after 8 queries, PIDS has a shorter total
time on all four attributes. This is more promising, consid-
ering that PIDS also has a better compression ratio.

7.2.2 Materialization and Outliers
Figure 11 shows an experiment with the two types of

materialization operators: fast materialization, which loads
sub-attributes into an in-memory data structure that can be
used by other operators, and string materialization, which
generates string results for output. We denote them by
PIDS-Fast and PIDS-String respectively. For the 64-bit Int
representation of timestamp data, we also show 64-bit Int-
Fast, which reads 64-bit integers into memory, and 64-bit
Int-String, which uses Apache Commons’ FastDateFormat
to format 64-bit integers into timestamp strings.

Since materialization requires access to the whole dataset
and no data can be skipped, it is not surprising that PIDS no
longer beats competitors by a large margin. Nevertheless,
we see that it still outperforms all other competitors on the
phone attribute. On the IPv6 and timestamp attributes,
PIDS outperforms Gzip, and has a similar throughput to
Snappy. Only on the address attribute, does PIDS have a
slightly worse throughput than Gzip. A cost breakdown
shows that when the number of sub-attributes increases,
more time is spent on decoding each sub-attribute, and de-
coding string sub-attributes is slower than decoding integer
sub-attributes, primarily due to decoding bytes to UTF-8.

We notice that for the timestamp attribute, although 64-
bit Int-Fast is 4 times faster than other approaches, 64-bit
Int-String is so slow that it is almost invisible in the fig-
ure. We saw similar results when executing wildcard pred-

icates on 64-bit integers. The profiling result shows that
over 40% of the time is spent on formatting integers to
strings. In PIDS, we introduce an optimized integer to
string algorithm inspired by the integer constant division
algorithm [30], which formats an integer to string 37 times
faster than String.format in Java. With this algorithm,
PIDS-String is only 10% slower than PIDS-Fast and remains
competitive against other approaches.

In Figure 12, we test the impact of outliers on the string
materialization of phone numbers by controlling the per-
centage of outliers. We show the throughput normalized
against having no outliers. We observe a minimal impact
on the throughput when the percentage of outliers is less
than 1% (shown in the small box). Additional increases to
the percentage of outliers create a proportional impact on
throughput. Considering that most attributes we observe
have less than 1% outliers, this result shows that outliers
have a negligible impact.

7.3 Pattern Inference and Data Extraction
Applying PIDS on an attribute requires executing the pat-

tern inference algorithm on the attribute, and using the in-
ferred pattern to extract sub-attributes. In this section, we
show that PIDS accomplishes these tasks efficiently.

In Figure 13, we show the time used to infer a pattern
from the attributes while varying the sampling size. We see
with sample size of 2000, the inference latency is around
1 second. This latency is negligible for large data loading
tasks as it is an one-off operation.

We also study how the sample size affects accuracy in
random sampling, measured by the coverage of a pattern
on an attribute. Assuming the data in an attributes can
be covered by non-overlapping patterns p1, p2, . . . , pn, each
with coverage ci. The pattern PIDS generates will cover
pi when the sample includes at least one record from pi.
With uniform sampling, a sample size E(S) = max( 1

1−ci
)

is sufficient to cover all pi. We experimentally verify that
a sample size 500 is sufficient to achieve coverage of 99%,
and sample size 2000 can reach coverage of 99.95%, on the
4596 string attributes that PIDS extracts a valid pattern.
To further improve coverage, other sampling methods such
as adaptive and biased sampling [17] can also be employed
to guarantee instances with small numbers also appear in
the sample, at the cost of higher inference latency.

It is crucial to have an efficient data extraction algorithm
for attribute decomposition. In Figure 14, we show a micro-
benchmark comparing PIDS’s sub-attribute extraction al-
gorithm with the widely used regular expression-based algo-
rithm and a state machine-based algorithm based on recent
work on extracting structures from relational attributes [14].
We varied the number of sub-attributes, with each sub-
attribute containing five numerical digits and split by a
comma. When the number of sub-attributes is smaller than
10, PIDS achieves over 2 times throughput compared to reg-
ular expression, and 50% improvement compared to a state
machine. The throughput of PIDS diminishes gradually
when the attribute length increases, but still outperforms
the two competitors by 30-50%.

Next, we compare PIDS’s pattern inference and data ex-
traction algorithm against Datamaran [11], a state-of-the-
art solution for extracting structural information from log-
like datasets. We conduct the comparison from the perspec-
tive of both correctness: being able to generate accurate
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with increasing the percentage of outliers.
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performance.

Table 5: Comparison of PIDS and Datamaran on inference
accuracy. PIDS finds more patterns than Datamaran on the
entire dataset of 9124 string attributes.

Category Entire Dataset After Classifier

Both find a pattern 1758(19.04%) 566 (19.73%)

Both find no pattern 4597(49.89%) 17 (0.59%)
Only PIDS finds
a pattern

2841(30.83%) 2285 (79.67%)

Only Datamaran
finds a pattern

18(0.22%) 0(0%)

patterns from given attributes, and time efficiency: bet-
ter throughput on pattern inference and data extraction. We
evaluate an open-source implementation from the authors.

To compare the accuracy of pattern inference, we apply
both PIDS and Datamaran to 1) the entire dataset of 9124
string attributes, 2) the dataset of attributes marked as
sound by the classifier we introduced in Section 5.3. We
mark an extracted pattern as valid if it (1) contains more
than one sub-attribute and (2) has more than 50% coverage.
In Table 5, we show that PIDS manages to find a pattern
on 2841 attributes(30% of total) that Datamaran does not,
while Datamaran only find 18 patterns that PIDS does not.
After applying the classifier, PIDS works even better to rec-
ognize 2285 patterns that Datamaran does not. Besides,
this result also cross-validates the effectiveness of the clas-
sifier: it manages to filter out most attributes that neither
PIDS nor Datamaran extract patterns. We note that Data-
maran was designed to target log-like data files, which may
contribute to some of its inferior performance.

We are also interested in the attributes on which PIDS
and Datamaran do not agree. We categorize the 31% data
columns on which PIDS finds patterns, but Datamaran does
not, into three types, and explain how PIDS handles them.
• Type 1: Attributes contains symbols not recognized by

Datamaran. Datamaran relies on a hard-coded symbol
table to split the records. PIDS overcomes this by infer-
ring common separators from context and works in a truly
unsupervised manner.
• Type 2: Attributes contain English words or phrases.

Some attributes, such as addresses, contain English words
or phrases. Datamaran recognizes all spaces in these at-
tributes as separators and generates erroneous patterns.
PIDS can recognize words and phrases, and treats them
as integral components.
• Type 3: Attributes with optional sub-attributes. For ex-

ample, if an attribute consists of 50% date string, and 50%
timestamp string, PIDS recognizes the date sub-attributes
as mandatory and the time ones as optional.
There are 18 attributes on which PIDS infers no pattern,

but Datamaran does. We manually inspect these attributes
and see that these attributes contain only one distinct value.
PIDS infers a pattern consisting of only constant from these
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Figure 15: Comparison of PIDS and Datamaran on time
efficiency. PIDS is 2-15x faster than Datamaran on inference
and 20-40x on data extraction.

attributes, and consider such pattern as invalid. We believe
this also shows PIDS is more effective in the sense of recog-
nizing meaningful pattern.

We then compare the time efficiency of pattern inference
and data extraction between PIDS and Datamaran, using
5 representative string attributes, each containing 1 million
records. Datamaran samples 2000 records from the target
attribute for inference, and we configure PIDS to follow the
same setting. In Figure 15, we see that PIDS is 2-15x faster
than Datamaran in pattern inference. In the data extraction
task, PIDS achieves 20-40x throughput comparing to Data-
maran. Considering that PIDS is implemented in Java and
Datamaran in C++, this performance boost is significant.

8. CONCLUSION
In this paper, we introduce PIDS, a technique to extract

sub-attributes from relational string attributes in columnar
stores, and execute query operators on them. We build a
prototype of PIDS based on the Apache Parquet storage
format to show that PIDS can improve both compression ra-
tio and query operator execution efficiency. When executing
query operators, PIDS is 2-30 times faster than execution on
the original string attributes. In the future, we plan to ex-
tend PIDS to support more features, including using cross-
validation to recognize extractable patterns, multi-pattern
support for attributes, and supervised pattern inference al-
gorithm. We are also interested in exploring how PIDS can
improve other database operators such as joins, hashing, and
aggregation, and integrate PIDS into a workload-aware and
compression-aware cost optimizer.
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