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Abstract—We present k-ShapeStream, a clustering method for
streaming time-series data. In addition to the algorithmic novelty,
the method represents a highly practical approach for electric
grid data analytics, requiring no model assumptions or ground
truth information, running sustainably on ever growing datasets,
and providing intuitive and insightful results to grid operators.
We demonstrate the effectiveness of k-ShapeStream using several
months of real synchrophasor data from an operational distri-
bution network in California. Through two case studies on (i)
transformer tap changes; and (ii) voltage sags, we illustrate how
k-ShapeStream assists in identifying and analyzing recurring grid
events, a critical task for decision making in electric grids.

Index Terms—clustering, streaming, PMU, time series, big
data, situational awareness

I. INTRODUCTION

The electric grid faces challenges from the proliferation of
renewable generation technologies, novel loads, and networked
grid equipment. Increasingly frequent extreme weather events
damage grid infrastructure and may cause dangerous grid
failures with catastrophic consequences. This is the case
in California, where high winds have caused grid failures
that sparked wildfires [1]. As networked control equipment
spreads, cyber-attacks on the grid are another burgeoning
concern; a successful attack on the Ukrainian grid in 2015
affected 225, 000 customers [2]. Integral to maintaining re-
liable and safe grid operations in the face of this multitude
of challenges is better situational awareness: knowing what
is happening in real time. This is especially necessary in
distribution networks, traditionally the opaque and passive
ends of the system. Today, distributed generation and novel
loads are turning distribution systems into active and dynamic
networks that must be monitored and controlled [3].

The need for better situational awareness has driven the de-
velopment of advanced grid sensors, such as Phasor Measure-
ment Units (PMUs). Already widely deployed in transmission
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networks and increasingly deployed in distribution, PMUs re-
port accurately time-stamped phasor current and voltage mea-
surements at up to 120 Hz [4]. Unfortunately, measurement
data alone do not deliver situational awareness. If unmediated,
high-resolution data streams can be overwhelming to already
strained engineers and operators [5]. Algorithms are needed
to transform measurements into insights. An important class
of such methods focuses on event classification, which aims
to categorize events in grid measurements. Events include
any significant permanent or transient system state change.
Events may be detected in any measurement stream (e.g.,
voltage, current, or frequency) and range from routine (e.g.,
capacitor switching and transformer tap changes) to unusual
abnormalities (e.g., high-impedance faults).

Machine learning (ML) techniques are well-suited to event
classification in the newly data-rich grid context, and the
literature is replete with examples. Several works train clas-
sifiers on labelled grid events [6]–[14]. The details of the
approaches differ: for example, the classifiers used include
SVMs, decision trees, and neural networks; measurements
may be real-world or simulated; some works transform raw
time-series measurements into carefully engineered features;
and the specificity of labels used varies. What they have in
common, however, is a reliance on significant amounts of
expert-labelled data. Labelled data is scarce, limited by time
and privacy constraints. Even once trained, many ML models
produce brittle and non-intuitive results. This is problematic
for algorithms which need to generalize to different systems
and require human feedback.

In light of these issues, clustering is a promising alternative.
Clustering categorizes data points into groups based on some
similarity measure in an unsupervised manner (i.e., requiring
no labelled data). If performed on raw measurements or simple
features, clustering produces highly intuitive results. In the
grid context, clustering has been extensively applied to load
data [15]–[17]. Closest to our work are [18]–[20], which apply
off-the-shelf clustering approaches to PMU time-series mea-
surements of events. We build on these work in two important
respects. First, we develop a streaming clustering approach,
namely, k-ShapeStream, that allows clusters to be updated
with new event data without requiring access to historic event
data. This is vital for algorithms that will run online as new978-1-6654-3597-0/21/$31.00 ©2021 IEEE



measurements arrive. The approach in prior work necessitates
re-clustering on the entire set of new and historic event data
every time new events are added, which quickly becomes
impractical. Second, we develop a probabilistic time-series
distance measure for clustering with multiple benefits. Our
distance measure improves algorithm performance, enables
anomaly detection, and enhances human interpretation of the
results. By returning a confidence measure rather than cut-and-
dried answers, our algorithm provides more context to users
and further engender trust in the analytic tool.

We start by briefly describing k-Shape (Section II), a time-
series clustering algorithm [21], [22]. Then, we show how k-
ShapeStream enables k-Shape to (i) operate over streaming
data; (ii) produce probabilistic interpretable results; and (iii)
separate outliers from data (Section III). Finally, we demon-
strate the effectiveness of k-ShapeStream on events detected
in voltage magnitude measurements from an operational dis-
tribution network in California (Sections IV-V).

II. BACKGROUND: k-SHAPE TIME-SERIES CLUSTERING

k-Shape is a time-series clustering algorithm that has
achieved state-of-the-art performance across a multitude of
domains [22], including the energy sector [23]–[25]. Simi-
larly to k-means [26], k-Shape segregates data points into k
clusters—with k, specified by the user—by iteratively max-
imizing intra-cluster similarity and ultimately returns clus-
ter members and representative centroids. k-means uses the
Euclidean distance to compare data points and computes
the centroid of a cluster as the arithmetic mean of all its
members’ points. The distinctive differences of k-shape are
its use of a normalized version of cross-correlation as the
similarity measure between time series, termed Shape-based
Distance (SBD), and an eigen-decomposition-based method
for centroid computation. These modifications are especially
suited to time-series measurements. SBD is intuitive, robust to
time-series scaling and misalignment, and can be efficiently
computed via Fast Fourier Transform (FFT) [27]. While the
arithmetic mean for centroid computation tends to have a low
pass effect, eigen-decomposition preserves sharp time-series
signatures better and, therefore, produces more representative
centroids. Together, these features make k-Shape an attractive
algorithm for clustering time-series grid events.

III. CLUSTERING STREAMS OF TIME SERIES

k-Shape requires access to the entire set of time series
and becomes prohibitively expensive to operate in streaming
settings due to the need to re-cluster new and historic data.
To alleviate that critical issue, we develop k-ShapeStream. k-
ShapeStream clustering begins by initializing k clusters. These
clusters are updated with each new event data set (hence this
is streaming clustering). Specifically, in round r of clustering,
nr time series of length t, contained in the nr-by-t data matrix
Xr, are added to the existing clusters. Associated with each
cluster are six parameters: a scalar cumulative member count, a
t-by-1 centroid, a t-by-t shape matrix, as well as three param-
eters to parametrize the distribution of distances between the

time-series cluster members and the cluster centroid. These are
a scalar mean, a scalar standard deviation, and a scalar squared
mean. For cluster j at the end of round r, the six parameters
are denoted as mr(j), ur(j), Sr(j), µr(j), σr(j), δr(i),
respectively. These parameters are efficiently updated in each
round and are the only data carried forward between rounds.
A length nr list of indices indicating the cluster assignment
of time series in Xr—denoted IDXr—is also returned after
each round. Fundamental to the streaming approach is that
shape matrices—from which cluster centroids are extracted
via eigen-decomposition—can be linearly updated with each
new round of data, allowing centroids to reflect the entire set
of cluster member without accessing data from prior rounds.
k-ShapeStream assigns each time series in data matrix Xr

either to one of the k clusters, or to an outlier set, based
on the normalized cross-correlation distance between the time
series and the centroid of each cluster. The assignment depends
on the distribution of distances between the existing centroid
and members of the cluster. The distribution is assumed to
be Gaussian, and, for cluster j, is fully parameterized by
mean µr−1(j) and standard deviation σr−1(j). Therefore, time
series i is assigned to a cluster or to the outlier set as follows:

disti(j) ,
SBD(Xr(i), ur(j))− µr−1(j)

σr−1(j)

IDXr(i) =

{
argminj disti(j) if minj disti(j) < τ

outlier otherwise

τ is a user-set threshold of the number of σ’s of permissible
deviation. A typical choice—used in this work—is τ = 2. By
labeling outliers, k-ShapeStream allows unusual or unfamiliar
events to be flagged for analysis and also avoids cluster con-
tamination by outliers. Within round r, cluster memberships
are iteratively refined, either until they have stabilized or until
the maximum number of iterations has been reached. At the
end of the round, cluster parameters are updated based on
the final assignments of time series in Xr. Now, Xr can be
completely discarded; all pertinent information for the next
round is captured in the cluster parameters. This makes the
method sustainable for streams of indefinite duration.

Pseudocode for k-ShapeStream is provided in A1-3. The
SBD function in the pseudocode returns the shape based
distance and aligned time series. SBD is fully described
in [21] and has achieved state-of-the-art accuracy and run-
time performance [28]. The time series must initially be z-
normalized, as described in [29]. The updates of the intra-
cluster distance statistics are described in A3. Notice that to
update the standard deviation of intra-cluster distances, we
must keep track of the mean of intra-cluster distances and the
mean of squared intra-cluster distances. Motivated by an maxi-
mum likelihood approach, we choose to use a smoothing factor
when updating the standard deviation to capture increasing
certainty in the distribution parameters with increasing number
of cluster members [30]. Importantly, the cluster parameters
are updated using only the earlier parameters but none of the



A 1: [IDXr, Cr] = k-ShapeStream(Xr, Cr−1(j))

Input : Xr is an nr-by-t matrix containing nr
z-normalized time series of length t.
Cr−1 contains cluster parameters from the prior
round.

Output : IDXr is an nr-by-1 vector containing the
assignment of nr time series to k clusters.
Cr contains cluster parameters at the end of this
round.

ur ← Cr−1.u // prior centroids
µr ← Cr−1.µ, σr ← Cr−1.σ // prior params
iter ← 0, IDX ′r ← [], Sr ← []
mindist← 0 // nr-by-1 zeros vector
while IDX ′r 6= IDXr & iter < 100 do

IDX ′r ← IDXr
// Refinement
for j ← 1 to k do

X ′ ← []
for i← 1 to nr do

if IDXr(i) = j then
X ′ ← [X ′, Xr(i)]

end
end
[Cr.ur(j), Cr.Sr(j)] ← ShapeExtraction(X ′,
Cr−1(j))

end
// Assignment
for i← 1 to nr do

mindist(i)←∞
for j ← 1 to k do

[d, x′]← SBD(ur(j), Xr(i))

dist← |d−µr−1(j)|
σr−1(j)

if dist < mindist(i) then
mindist(i)← dist, IDXr(i)← j

end
end
if mindist(i) > τ then

IDXr(i)← k + 1
end

end
iter ← iter + 1
[Cr.µr , Cr.σr , Cr.δr] = UpdateStats(Xr , IDXr ,
mindist, Cr−1)

end
// Update counts
Cr.mr ← Cr−1.m
for i← 1 to nr do

mr(Xr(i)) = mr(Xr(i)) + 1
end

prior cluster members. This is the fundamental benefit of the
streaming approach.

IV. DEMONSTRATION

The algorithm is demonstrated on open-source voltage
magnitude measurements from a single PMU on an oper-
ational distribution feeder in California, accessed through
the NI4AI project platform1 [31]. Similar to [18], [32], we
define event points as sharp, significant changes in voltage
magnitudes and extract a window of 2 seconds (240 samples)

1https://ni4ai.org/

A 2: [u, S′] = ShapeExtraction(X,C)

Input : X is an n-by-t matrix of z-normalized time series
C cluster parameters of interest.

Output : u′ is new t-by-1 centroid.
S′ is new t-by-t shape matrix.

X ′ ← []
for i← 1 to n do

[dist, x′] ← SBD(C.u, X(i))
X ′ ← [X ′, x′]

end
S′ ← X ′T ·X ′ + C.S // incrementally updated
Q← I − 1

t
·O // I, O are identity & ones

matrices respectively

M ← QT · S′ ·Q
u′ ← eig(M, 1)

A 3: [µr, σr, δr] = NewStats(IDXr,mindist, Cr−1)
Input : Xr , IDXr , mind, Cr−1 as defined in Alg. 1.
Output : µr, σr, δr are k-by-1 vectors of new scalar cluster

means, std. devs, and squared means respectively
for j ← 1 to k do

mr−1 ← Cr−1.m(j)
count← 0, s← 0, ss← 0
for i← 1 to nr do

if IDXr(i) = j then
count = count+ 1
s = s+mindist(i)
ss = ss+mindist(i)2

end
end
µr(j)← mr−1·Cr−1.µ(j)+s

mr−1+count

δr(j)← mr−1·Cr−1.δ(j)+ss

mr−1+count

α← mr−1+count

1+mr−1+count
// Std. Deviation smoothing

σr(j)← α
√
δr(j)− µr(j)2 + (1− α)

end

around each event point from the measurement stream. These
time series are the inputs to k-ShapeStream. Note that k-
ShapeStream is for post-detection event analysis: any event
detection method can be used to find the events that are passed
to k-ShapeStream. We use a simple approach, but there are a
multitude of other options [6], [33]–[35].

Fig. 1. Average intra-cluster distance for different choices of k. This analysis
on the first batch of data is useful for choosing k: here we choose k = 7,
just after the “knee” of the curve.

https://ni4ai.org/


Fig. 2. Three clusters out of the seven and the set of outliers visualized over eight rounds of clustering. Gray lines indicate individual events. Colored lines
show the cluster centroids. The inset number shows the number of events added to the cluster in each round. The inset distribution visualizes how intra-cluster
distance distributions evolve: notice the narrowing distribution representing increasing certainty in the event’s signature.

To emulate a streaming situation, we cluster events in
batches of 30 across a total of over 700 events from four
months of data. For realism, we choose k based only on the
first batch of data by clustering it with several values of k and
considering the average intra-cluster distance—the average of
the SBD between each time series and its centroid—for each
choice of k. The results are shown in Fig. 1, based on which
we choose k = 7, as it lies just after the “knee” of the curve.
Fig. 2 shows three of the resulting clusters, along with the
outlier set, over eight rounds of clustering.

V. EXAMPLE USE CASE

To showcase the utility of k-ShapeStream, we perform
analyses on some recognizable clusters from the full set of
seven. These examples are not meant to present technically
novel methods for system monitoring. Instead, we hope to il-
lustrate how k-ShapeStream enables identification and analysis
of recurring grid events and can be easily integrated into an
analysis workflow to support a human analyst.

A. Transformer Tap Events

Load tap changing transformers (LTCs), common at distri-
bution substations between medium and low voltage, mechan-
ically adjust the effective turns ratio between their primary
and secondary coils. They periodically “tap” the voltage up
or down to compensate for changing voltage drop due to
load variation, thus maintaining customer voltages within
permissible limits. LTC failures can be costly and highly
disruptive, motivating transformer monitoring [37]. Analysis
of LTC operation based on PMU data has been manually

demonstrated in the past [38]. k-ShapeStream can be used
to automatically identify LTC tap events. Two clusters found
in the data showing sharp step changes in voltage clearly
correspond to LTCs operating to step voltage up and down
(Fig. 3(a)-(b)). Notice the narrowness of the intra-cluster
distance distributions indicating the high regularity of the LTC
signatures. Once the signatures are isolated, different features
can be analyzed. We consider the pre-event voltage (Fig. 3(c)),
voltage change (Fig. 3(d)), and time of occurrence (Fig. 3(e)).
For this set of LTC operations, all these features seem normal:
magnitudes are generally lower preceding a tap up operation
than a tap down, the size of the voltage step is highly regular,
and tap ups tend to occur later in the day while tap downs
occur earlier (as we would expect under a typical residential
feeder load profile). Such an analysis could reveal irregular
transformer behavior. For example, the intra-cluster distance
distribution found by k-ShapeStream could be used to reveal
an anomalous LTC signature that might indicate incipient
failure. Note that no prior knowledge whatsoever about LTCs
was required for the algorithm to suggest the relevant clusters.

B. Voltage Sag Events

Voltage sags are large transient dips in a network voltage
magnitude that can last from less than a cycle to several sec-
onds. They may be caused by motor starts, equipment misop-
eration, or faults [39], including dangerous high-impedance
faults that fail to trip overcurrent protection. Recurrent sags
could be caused by repeated vegetation contact and indicate
a fire hazard. Large, long, or frequent voltage sags are also



Fig. 3. Analyzing clusters containing LTC operation events. Tap up (a) and down (b) signatures clustered together across several months of data and multiple
rounds of clustering. Distribution insets are very narrow indicating highly regular event signatures. (c) Voltage magnitude preceding tap event, showing lower
magnitudes for tap up events and higher magnitudes for tap down events. (d) Histogram of percent change in voltage during event showing highly regular
step size. (e) Occurrence of tap up and down events over study period, with histograms showing hourly distribution. Tap up events tend to occur later in the
day while tap down events tend to occur earlier, as is expected under a typical residential load profile.

Fig. 4. Analyzing cluster containing voltage sags. (a) A cluster containing 92 voltage sag events found over several months of data and multiple rounds
of clustering. The inset distribution of intra-cluster distances is wider than for the tap events in Fig. 3(a),(b) indicating less consistent event signatures. (b)
Comparison of the empirical distribution of sag magnitudes in the cluster to a theoretical model suggested in [36].

problematic in that they may cause sensitive loads and so-
lar PV inverters to trip offline. Monitoring voltage sags is
therefore important for maintaining safety and reliability. We
find one cluster containing a sharp, transient voltage drop
that corresponds to a recurring voltage sag signature (4(a)).
Notice from the intra-cluster distance distribution that while
this event signature is quite regular, it is less so than the
LTC tap signatures, as expected when comparing a random
event to equipment operation. A voltage sag feature with
implications for reliability is sag magnitude: the minimum
voltage magnitude attained during the event. A result in
the literature based on a simplified, general model of fault-
induced sags posits that the normalized frequency of sags
with magnitude M will be proportional to M

1−M [36]. Fig.
4(b) compares this model to the empirical distribution of
sag magnitudes in the cluster found by k-ShapeStream. The

model appears to describe the empirical distribution quite well,
indicating its efficacy for prediction and monitoring on this
feeder. Again, k-ShapeStream produces a characterization of
voltage sag type and frequency, and thereby generates possible
insights into physical occurrences, in an entirely unsupervised
learning process.

VI. CONCLUSION

The analyses of Sections V-A and V-B highlight the effi-
cacy of k-ShapeStream for identifying recurring and unusual
(“outlier”) event signatures in grid data. Once identified by
k-ShapeStream, these signatures can then be analyzed further
to identify issues, understand system behaviour, and improve
overall situational awareness. Without such a streaming clus-
tering approach, event signatures would have to be identified
manually, which is always time consuming and sometimes



impossible. Furthermore, k-ShapeStream generates highly in-
tuitive results including a distribution that reflects the degree
of confidence in a given cluster. These features make the
algorithm particularly suitable for assisting and collaborating
with a human user, which we believe is essential in the electric
grid context.
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